\(x^4+1997x^2+1996x+1997\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

a) x4 + 1997x2 + 1996x +1997

= x4 + 1997x2 + 1997x - x +1997

=(x4-x) + (1997x2 +1997x+1997)

=x(x3-1) + 1997(x2+x+1)

=x(x-1)(x2+x+1) + 1997(x2+x+1)

=(x2+x+1)(x2-x) + 1997(x2+x+1)

=(x2+x+1)(x2-x+1997)

b) x2 -x -2001.2002

=x2 - x -2002+2002

=(x2-20022)-(x-2002)

=(x-2002)(x+2002) - (x-2002)

=(x-2002)(x+2002+1)

=(x-2002)(x+2003)

c)x8 + 98x4 +1

= (x8+2x4+1) + 96x4

= (x4+1)2 + 96x4

=[(x4+1)2 + 2.(x4+1).8 + 64x4 ]+[32x4 - 16x2(x4+1)]

=(x4+1+8x2)-16x2(-2x2+x4+1)

=(x4+8x2+1)2- 16x2(x2-1)2

=(x4 + 8x2 +1)2- [4x(x2-1)]2

=(x4+8x2+1)2 - (4x3-4x)2

=(x4-4x3+8x2+4x+1)(x4+4x3+8x2-4x+1)

31 tháng 1 2018

a)   \(x^5-2x^4+3x^3-4x^2+2\)

\(=x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)

\(=x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4-x^3+2x^2-2x-2\right)\)

b)    \(x^4+1997x^2+1996x+1997\)

\(=\left(x^4+x^2+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

c)   \(x^8+x^4+1\)

\(=x^8+2x^4+1-x^4\)

\(=\left(x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

c)   \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

1 tháng 10 2017

mn giúp mình vs mik đang cần gấp

29 tháng 10 2017

Bạn tự làm cho trung thực đừng dựa vào người khác

Nếu ai thấy những gì mình nói là đúng thì nhớ k nha

Thanks

Ta có : \(x^8+14x^4+1\)

\(=x^8+2.x^4.7+1\)

\(=x^8+2.x^4.7+49-48\)

\(=\left(x^4+7\right)^2-48\)

\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)

3 tháng 6 2018

a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)

\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)

\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)

b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)

\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)

\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)

12 tháng 12 2017

a) \(x^4+1997x^2+1996x+1997\)

\(=\left(x^4-x\right)+\left(1997x^2+1997x+1997\right)\)

\(=x\left(x^3-1\right)+1997\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+1997\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

b) \(x^2-x-2015.2016\)

\(=x^2-2016x+2015x-2015.2016\)

\(=\left(x^2-2016x\right)+\left(2015x-2015.2016\right)\)

\(=x\left(x-2016\right)+2015\left(x-2016\right)\)

\(=\left(x-2016\right)\left(x+2015\right)\)

5 tháng 10 2016

chủ yếu dạng này là thêm bớt đẻ có hạng tử là x2+x+1 thôi, ko hiểu thì hỏi mình, mình cho cách làm nhé

1 tháng 10 2017

phần c làm thế nào banj

\

\(\left(a\right)x^8+98x^4+1\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(x^4-4x^3+8x^2+4x+1\right)\left(x^4+4x^3+8x^2+\left(-4\right)x+1\right)\)

\(\left(b\right)4x^4-32x^2+1\)

\(\text{ Phân tích thành nhân tử}\)

\(-\left(28x^2-1\right)\)

1 tháng 10 2017

cái này phân tích thành nhân tử:

vì máy tính nên ko viết đc mũ

(x mũ 4-4xmũ 3+8x mũ 2+4x+1)vì vậy biểu thức ko thể rút gọn

9 tháng 3 2019

\(x^4+1997x^2+1996x+1997=0\)

\(\Leftrightarrow\left(x^4-x\right)+1997\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x\left(x^3-1\right)+1997\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1997\right)\left(x^2+x+1\right)=0\)

\(\hept{\begin{cases}x^2-x+1997>0\\x^2+x+1>0\end{cases}}\Rightarrow ptvn\)

\(x^2-x+2011.2012=0\)

\(\Leftrightarrow x^2+2011x-2012x+2011.2012=0\)

\(\Leftrightarrow x\left(x+2011\right)-2012\left(x+2011\right)=0\Leftrightarrow\left(x-2012\right)\left(x+2011\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2012=0\\x+2011=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2012\\x=-2011\end{cases}}\)

9 tháng 3 2019

câu b) đề sai nhé,ở trên mk nhầm

c)

\(x^5=x^4+x^3+x^2+x+2\)

\(\Leftrightarrow x^5-x^4-x^3-x^2-x-2=0\)

\(\Leftrightarrow x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow x^4\left(x-2\right)+x^3\left(x-2\right)+x^2\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^4+x^3+x^2+1\right)\left(x-2\right)=0\Leftrightarrow x=2\)