K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

are you in Lao Cai

23 tháng 10 2018

A/\(x^2-4xy-4+y^2\)

\(=\left(x^2-4xy-4\right)+y^2\)

\(=\left(x-2\right)^2+y^2\)

B/\(\left(2x-3\right)\left(2x+3\right)-\left(2x-1\right)\)

\(=2x^2-3^2-2x+1\)

C/\(x^2-3x+4\)

Hem rút đc

E/\(\left(x+y\right)^2\left(x+y\right)^2\)

\(=\left(x+y\right)^4\)

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

26 tháng 10 2016

câu 1:

a,x2+2x-4z2+1

=x2+2x.1+12-(2z)2

=(x+1)2-(2z)2

=(x+1-2z)(x+1+2z)

26 tháng 10 2016

bạn nên dùng hằng đẳng thức đã học

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

Bài 3:

a: =>(2x-7)(x-2)=0

=>x=7/2 hoặc x=2

b: =>(x-1)(x+2)=0

=>x=1 hoặc x=-2

d: =>2x+3=0

hay x=-3/2

4 tháng 11 2018

a) \(2x^2-2y^2\)

\(=2\left(x^2-y^2\right)\)

\(=2\left(x-y\right)\left(x+y\right)\)

b) \(x^2-4x+4\)

\(=x^2-2\cdot x\cdot2+2^2\)

\(=\left(x-2\right)^2\)

c) \(x^2+2x+1-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x-y+1\right)\left(x+y+1\right)\)

d) \(x^2-4x\)

\(=x\left(x-4\right)\)

e) \(x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2\)

\(=\left(x+5\right)^2\)

g) \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

h) \(2x^2-2\)

\(=2\left(x^2-1\right)\)

\(=2\left(x-1\right)\left(x+1\right)\)

i) \(5x^2-5xy+9x-9y\)

\(=5x\left(x-y\right)+9\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+9\right)\)

k) \(y^2-4y+4-x^2\)

\(=\left(y-2\right)^2-x^2\)

\(=\left(y-x-2\right)\left(y+x-2\right)\)

l) \(x^2-16\)

\(=x^2-4^2\)

\(=\left(x-4\right)\left(x+4\right)\)

m) \(3x^2-3xy+2x-2y\)

\(=3x\left(x-y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+2\right)\)

o) \(3x^4-6x^3+3x^2\)

\(=3x^2\left(x^2-2x+1\right)\)

\(=3x^2\left(x-1\right)^2\)

4 tháng 11 2018

a) 2x2 - 2y2

 = (2x - 2y)(2x + 2y)

 = 4(x - y)(x + y)

b) x2 - 4x + 4

 = (x - 2)2

c) x+ 2x + 1 - y2

 = (x + 1)2 - y2

 = (x + 1 - y)(x + 1 + y)

d) x2 - 4x 

 = x(x - 4)

e) x+10x + 25

 = (x + 5)2

g) x2 - 2xy + y2 - 9

= (x - y)2 - 32

 = (x - y - 3)(x - y + 3)

h) 2x2 - 2

= 2(x2 - 1) 

 = 2(x - 1)(x + 1)

i) 5x- 5xy + 9x - 9y

  = 5x(x - y) + 9(x- y)

 = (5x + 9)(x - y)

k) y2 - 4y + 4 - x2

 = (y - 2)2 - x2

 = (y - 2 - x)(y - 2 + x)

l) x- 16

 = x- 42

 = (x - 4)(x + 4)

m) 3x2 - 3xy + 2x -2y

 = 3x(x - y) +2(x-y)

 = (3x + 2)(x - y)

o) 3x- 6x+ 3x2

 = 3x4 - 3x3 - 3x3 + 3x2

 = 3x3(x - 1) - 3x2(x - 1)

 = (3x- 3x2)(x - 1)

 = 3x2(x - 1)(x - 1)

 = 3x2.(x - 1)2

15 tháng 12 2016

giúp mk vskhocroi

20 tháng 12 2016

bài 1: ... phá hết ra

bài 2

câu a, tách -2x^2 thành -x^2-x^2 rồi tự giải quyết

câu b, thêm bớt 1 để tạo hằng đẳng thức

câu c, đổi z-x thành -x-z

câu d là hằng đẳng thức đó má nội

mình rất muốn làm hết nhưng cái tật lười nó ko cho mình làm, mong bạn thông cảm

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

4 tháng 11 2021

a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)

b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)

d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)

e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)