\(x^2-2x-3\)

b) \(x^2-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)

b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)

c.  \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)

3 tháng 8 2020

e. \(2x^4+7x^2+3\)

\(=2x^4+x^2+6x^2+3\)

\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)

\(=\left(x^2+3\right)\left(2x^2+1\right)\)

11 tháng 12 2018

\(x^2+5x+6\)

\(=x^2+3x+2x+6\)

\(=x.\left(x+3\right)+2.\left(x+3\right)=\left(x+3\right).\left(x+2\right)\)

a, 25-x2+4xy-4y2 

= 25-(x2-4xy+4y2

= 52-(x-2y)2 

= (5-x+2y)(5+x-2y)   

Các biểu thức sau bạn tự chứng minh nhé

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu

DD
8 tháng 10 2021

a) \(x^2+8x+15=x^2+3x+5x+15=\left(x+3\right)\left(x+5\right)\)

b) \(x^2+3x+2=x^2+2x+x+2=\left(x+1\right)\left(x+2\right)\)

c) \(-x^2+7x-6=-x^2+x+6x-6=\left(-x+6\right)\left(x-1\right)\)

d) \(5x^3y-10x^2y^2+5xy^3=5xy\left(x^2-2xy+y^2\right)=5xy\left(x-y\right)^2\)

e) \(2x^2+7x-15=2x^2-3x+10x-15=\left(2x-3\right)\left(x+5\right)\)

9 tháng 8 2018

mk ghi đáp án, còn lại bạn tự biến đổi

a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)

b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)

9 tháng 8 2018

mk làm chi tiết theo yêu của của người hỏi đề:

a) \(2x^3-x^2+5x+3\)

\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)

\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

b)  \(x^3+5x^2+8x+4\)

\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)

\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

27 tháng 10 2021

helpppppp

3 tháng 7 2017

Ta có ; x2 - 11x + 24

= x2 - 3x - 8x + 24

= x(x - 3) - (8x - 24)

= x(x - 3) - 8(x - 3)

= (x - 3)(x - 8)

5 tháng 8 2017

1) \(\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3xy\left(x-y\right)-12\left(x-y\right)\)

\(=\left(3xy-12\right)\left(x-y\right)\)

2) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

5 tháng 8 2017

Ta có : 3x2 - 3y2 - 12x + 12y 

= (3x2 - 3y2) - (12x - 12y)

= 3(x2 - y2) - 12(x - y)

= 3(x - y)(x + y) - 4.3.(x - y)

= 3(x - y)(x + y - 4)