Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b)Ta có: x2y+xy2+x+y=2010
<=>xy.x+xy.y+x+y=2010
<=>11x+11y+x+y=2010
<=>12(x+y)=2010
<=>x+y=167,5
=>(x+y)2=28056,25
<=>x2+y2+2xy=28056,25
<=>x2+y2=28034,25
\(2a^2-2b^2+3ab-5a+5b-3=\left(a+2b-3\right)\left(2a-b+1\right)\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
\(64x^4+y^4\)
\(=\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
\(x^5+x-1\)
\(=x^5+x^2-\left(x^2-x+1\right)\)
\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
\(x^2-3\)
\(=x^2-\left(\sqrt{3}\right)^2\)
\(=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
a, \(3x^3-4x^2+5x-4\)
\(=3x^3-3x^2-x^2+x+4x-4\)
\(=3x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(3x^2-x+4\right)\left(x-1\right)\)
b, \(4x^3-3x^2+5x-21\)
\(=4x^3-7x^2+4x^2-7x+12x-21\)
\(=x^2\left(4x-7\right)+x\left(4x-7\right)+3\left(4x-7\right)\)
\(=\left(x^2+x+3\right)\left(4x-7\right)\)
c, \(3x^3+8x^2+14x+15\)
\(=3x^3+5x^2+3x^2+5x+9x+15\)
\(=x^2\left(3x+5\right)+x\left(3x+5\right)+3\left(3x+5\right)\)
\(=\left(x^2+x+3\right)\left(3x+5\right)\)
Bài này dùng phương pháp nhẩm nghiệm (tối ưu nhất với đa thức bậc ba)
Chúc bạn học tốt.
a) \(7x^2+34x-5=7x\left(x+5\right)-1\left(x+5\right)\)
\(=\left(x+5\right)\left(7x-1\right)\)
b) \(12a^2-3ab+8ac-2bc=3a\left(4a-b\right)+2c\left(4a-b\right)\)
\(=\left(4a-b\right)\left(3a+2c\right)\)
\(a,=7x^2-x+35x-5=x\left(7x-1\right)+5\left(7x-1\right)=\left(x+5\right)\left(7x-1\right)\\ b,=3a\left(4a-b\right)+2c\left(4a-b\right)=\left(3a+2c\right)\left(4a-b\right)\)