Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)
\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
Tham khảo nhé~
a , 3x2 + 3y2 - 6xy - 12
= 3 ( x2 + y2 - 2xy - 4 )
= 3 ( x - y )2 - 22
= 3 ( x - y + 2 ) ( x - y - 2 )
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
a, \(9x^2+6xy+y^2=\left(3x\right)^2+2\times3xy+y^2=\left(3x+y\right)^2\)
b, \(6x-9-x^2=-\left(x^2-2\times3x+3^2\right)=-\left(x-3\right)^2\)
c, \(x^2+4y^2+4xy=x^2+2\times2xy+\left(2y\right)^2=\left(x+2y\right)^2\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
a)\(x^2-y^2-x+3y-2=\left(x^2+xy-2x\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)\)
\(=x\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)\)
\(=\left(x+y-2\right)\left(x-y+1\right)\)
b)\(x^3+y^3+6xy+x+y-10\)
\(=\left(x^3+xy^2-x^2y+2x^2+2xy+5x\right)+\left(y^3+x^2y+xy^2+2y^2+2xy+5y\right)-\left(2x^2+2y^2-2xy+4x+4y+10\right)\)
\(=x\left(x^2+y^2-xy+2x+2y+5\right)+y\left(y^2+x^2-xy+2y+2x+5\right)-2\left(x^2+y^2-xy+2x+2y+5\right)\)\(=\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+5\right)\)
Phân tích đa thức thành nhân tử:
\(3x^2-12x^2y^2+3y^2+6xy\)
\(=3\left(x^2-4x^2y^2+y^2+2xy\right)\)
\(=3\left[\left(x^2+2xy+y^2\right)-\left(2xy\right)^2\right]\)
\(=3\left[\left(x+y\right)^2-\left(2xy\right)^2\right]\)
\(=3\left(x+y-2xy\right)\left(x+y+2xy\right)\)
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
a) \(8a^2xy-18b^2xy=2xy\left(4a^2-9b^2\right)=2xy\left(2a-3b\right)\left(2a+3b\right)\)
b) \(32a^2b^2-4=4\left(8a^2b^2-1\right)\)
c) \(x^2-49z^2-4xy+4y^2=\left(x^2-4xy+4y^2\right)-49z^2\)
\(=\left(x-2y\right)^2-\left(7z\right)^2=\left(x-2y+7z\right)\left(x-2y-7z\right)\)
d) \(3x^2+6x+3-3y^2=3\left(x^2+2x+1-y^2\right)=3.\left[\left(x+1\right)^2-y^2\right]\)
\(=3\left(x-y+1\right)\left(x+y+1\right)\)
e) \(12x^2y-12y^3+36xy+27y=3y\left(4x^2-4y^2+12x+9\right)\)
\(=3y\left[\left(4x^2+12x+9\right)-4y^2\right]=3y\left[\left(2x+3\right)^2-\left(2y\right)^2\right]\)
\(=3y\left(2x-2y+3\right)\left(2x+2y+3\right)\)
a) 8a2xy - 18b2xy
= 2xy( 4a2 - 9b2 )
= 2xy( [ ( 2a )2 - ( 3b )2 ]
= 2xy( 2a - 3b )( 2a + 3b )
b) 32a2b2 - 4
= 4( 8a2b2 - 1 )
c) x2 - 49z2 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 49z2
= ( x - 2y )2 - ( 7z )2
= ( x - 2y - 7z )( x - 2y + 7z )
d) 3x2 + 6x + 3 - 3y2
= 3( x2 + 2x + 1 - y2 )
= 3[ ( x2 + 2x + 1 ) - y2 ]
= 3[ ( x + 1 )2 - y2 ]
= 3( x - y + 1 )( x + y + 1 )
e) 12x2y - 12y3 + 36xy + 27y
= 3y( 4x2 - 4y2 + 12x + 9 )
= 3y[ ( 4x2 + 12x + 9 ) - 4y2 ]
= 3y[ ( 2x + 3 )2 - ( 2y )2 ]
= 3y( 2x - 2y + 3 )( 2x + 2y + 3 )
a) 3x2 + 3y2 - 6xy - 12
= 3( x2 + y2 - 2xy - 4 )
= 3[ ( x2 - 2xy + y2 ) - 4 ]
= 3[ ( x - y )2 - 22 ]
= 3( x - y - 2 )( x - y + 2 )
b) x2 - 4y2 + 6x - 9 < bạn xem xem đề có sai k >
a) \(3x^2+3x^2-6xy-12\)
\(=3.\left(x^2-2xy+y^2-4\right)\)
\(=3.\left[\left(x-y\right)^2-2^2\right]\)
\(=3.\left(x-y-2\right)\left(x-y+2\right)\)