\(2x-x^3+4y-8y^3\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

a) 2x - x3 + 4y - 8y3

= ( 2x + 4y ) - ( x3 + 8y3 )

= 2( x + 2y ) - ( x + 2y )( x2 - 2xy + 4y2 )

= ( x + 2y )( 2 - x2 + 2xy - 4y2 )

b) -3x2 + 11x + 14

= -3x2 - 3x + 14x + 14

= -3x( x + 1 ) + 14( x + 1 )

= ( x + 1 )( 14 - 3x )

16 tháng 10 2020

a) 2x - x3 + 4y - 8y3 

= (2x + 4y) - (x3 + 8y3

= 2 (x + y) - [x3 + (2y)3

= 2 (x + y) - (x + y)(x2 - 2xy + 4y2

= (x + y)( 2 - x2 + 2xy - 4y2)      (Thật sự là câu này mình vẫn chưa chắc chắn lắm =)))

b) -3x2 + 11x + 14 

= -3x2 - 3x + 14x + 14 

= (-3x2 - 3x) + (14x + 14) 

= -3x(x + 1) + 14(x + 1) 

= (-3x + 14)(x + 1)

=))

12 tháng 8 2018

A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)

7 tháng 7 2017

\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)

\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)

\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)

\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)

29 tháng 10 2017

Phân tích đa thức thành nhân tử

x3+3x2y9xy2+5y2

x8y8+x4y4+1

29 tháng 8 2018

mk viết đáp án, ko biết biến đổi ib mk

a)  \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)

b)    \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)

c)   \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)

d)   \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)

15 tháng 10 2017

=x^3 -8y^3 -2(x-2y)

=(x-2y)(x^2 +2xy +4y^2)- 2(x-2y)

=(x-2y)(x^2+2x +4y^2-2)

k day nhe

15 tháng 10 2017

Ta co:    x3 - 2x + 4y -8y3 = (x-8y3) -(2x -4y) = (x - 2y)(x2 + 2xy +y2) -2(x-2y) = (x-2y)(x2 + 2xy + y2 -2)

4 tháng 3 2021

a) \(4x^4+4x^3+5x^2+2x+1\)

\(x^2\left(4x^2+4x+5+\frac{4}{x}+\frac{1}{x^2}\right)\)

=\(x^2\left[\left(4x^2+\frac{1}{x^2}\right)+2\left(2x+\frac{1}{x}\right)+5\right]\)(1)

Đặt \(2x+\frac{1}{x}=a\)thì \(\left(2x+\frac{1}{x}\right)^2=a^2\)\(\Rightarrow4x^2+\frac{1}{x^2}=a^2-4\)

Thay vào (1), ta có:

\(x^2\left(a^2-4+2a+5\right)\)

=\(x^2\left(a^2+2a+1\right)\)

=\(x^2\left(a+1\right)^2\)

=\(\left[x\left(a+1\right)\right]^2\)

=\(\left[x\left(2x+\frac{1}{x}+1\right)\right]^2\)

=\(\left(2x^2+1+x\right)^2\)

\(=\left(2x^2+x+1\right)^2\)

3 tháng 3 2021

a) Đặt f(x) = 4x4 + 4x3 + 5x2 + 2x + 1

Sau khi phân tích thì đa thức có dạng ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

=> f(x) = ( 2x2 + ax + 1 )( 2x2 + bx + 1 )

<=> f(x) = 4x4 + 2bx3 + 2x2 + 2ax3 + abx2 + ax + 2x2 + bx + 1

<=> f(x) = 4x4 + ( a + b )2x3 + ( ab + 4 )x2 + ( a + b )x + 1

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}\Leftrightarrow}a=b=1\)

Vậy f(x) = 4x4 + 4x3 + 5x2 + 2x + 1 = ( 2x2 + x + 1 )2

b) 3x4 + 11x3 - 7x2 - 2x + 1

= 3x4 - x3 + 12x3 - 4x2 - 3x2 + x - 3x + 1

= x3( 3x - 1 ) + 4x2( 3x - 1 ) - x( 3x - 1 ) - ( 3x - 1 )

= ( 3x - 1 )( x3 + 4x2 - x - 1 )

1 tháng 11 2018

a,\(x^3-3x^2+3x-1-y^3=\left(x^3-1\right)-\left(3x^2-3x\right)-y^3\)

\(=\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)-y^3\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-y^3\)

\(=\left(x-1\right)^3-y^3=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)

....

1 tháng 11 2018

\(8x^2+10x-3\)

\(=8x^2+12x-2x-3\)

\(=4x.\left(2x+3\right)-\left(2x+3\right)\)

\(=\left(4x-1\right).\left(2x+3\right)\)

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left(x-1\right)^2+\left(x-1\right).y+y^2\)

ps: lớp 7, ko chắc 

2 tháng 9 2018

\(x^3+8y^3+2xy^2+x^2y\)

\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)

\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)