\(27x^4-9x^3+14x^2-4\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

a/ Đa thức này không phân tích được thành nhân tử bạn nhé.

b/ $(x+y)(y+z)(x+z)+xyz$

$=xy(x+y)+yz(y+z)+xz(x+z)+2xyz+xyz$

$=[xy(x+y)+xyz]+[yz(y+z)+xyz]+[xz(x+z)+xyz]$

$=xy(x+y+z)+yz(x+y+z)+xz(x+y+z)=(x+y+z)(xy+yz+xz)$

c/

$x^8+x^7+1=(x^8-x^2)+(x^7-x)+x^2+x+1$

$=x^2(x^6-1)+x(x^6-1)+x^2+x+1$

$=(x^6-1)(x^2+x)+x^2+x+1$

$=(x^2+x+1)(x-1)(x^3+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^3+1)(x^2+x)+1]=(x^2+x+1)(x^6-x^4+x^3-x+1)$

1 tháng 11 2016

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 9 2016

mk học lớp 7 thui

30 tháng 11 2017

a/ Nó là cái gì mà không phải nhân tử b

b/ \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

c/ \(3\left(2x+y+z\right)\left(x+2y+z\right)\left(x+y+2z\right)\)

30 tháng 11 2017

trình bày từng ý một được ko?

5 tháng 11 2016

a/ x3 + xz + y2 z - xyz + y3 

= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)

= (x2 - xy + y2)(x + y + z)

5 tháng 11 2016

Nhiều vậy. Xíu m làm

7 tháng 7 2016

a)  \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)

\(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)     #áp dụng hàng đẳng thức#

c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc

b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)

=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)

\(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)

=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)

7 tháng 7 2016

câu a ko phải -x-y mà là -x^5-y^5 bạn à

17 tháng 8 2019

a) \(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)

9 tháng 10 2018

Sửa đề chút :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3\)

\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

9 tháng 10 2018

c) x+ y3 + z3 - 3xyz

= x3 + 3x2y + 3xy2 + y3 + z3 - 3xyz - 3x2y - 3xy2

= (x+y)3 + z3  - 3xy.( z+x+y)

= (x+y+z).[(x+y)2 - (x+y).z + z2 ] - 3xy.(x+y+z)

= (x+y+z). ( x2 + 2xy + y2 - xz - yz + z2 - 3xy)

= (x+y+z) .(x2 + y2 + z2 - xy - xz -yz)

e) (a+b-c)2 - (a-c)2 - 2ab + 2bc

= (a+b-c - a+c).(a+b+c+a-c) - 2b.(a-c)

= b.(2a+b) - 2b.(a-c)

= b.(2a+b - a +c)

= b.( a+b+c)

xl bn nha! mk chỉ nghĩ đk 2 câu thoy, 1 câu bn kia làm r! 2 câu còn lại bn đợi người tiếp theo làm nhé

31 tháng 8 2018

a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)

b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)

Đặt x^2 - 3x - 1 = A

\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)

\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)

\(=\left(A-9\right)\left(A-3\right)\)

Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)

c)\(x^3-x^2-5x+125\)

\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Mình có việc bận nên chỉ đưa được kết quả ý d)  thật lòng mong các bạn tự tham khảo và giải