Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-8x+4\)
\(=3x^2-6x-2x+4\)
\(=\left(3x^2-6x\right)-\left(2x-4\right)\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(3x-2\right)\left(x-2\right)\)
a) \(3x^2-8x-4\)
\(=3x^2-6x-2x+4\)
\(=3x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-2\right)\)
b) \(4x^4+81\)
\(=x^4+81+18x^2-18x^2\)
\(=\left[\left(x^2\right)^2+2x^2.9+9^2\right]-18x^2\)
\(=\left(x^2+9\right)^2-(\sqrt{18}x^2)\)
\(=\left(x^2+9-\sqrt{18}x\right)\left(x^2+9+\sqrt{18}x\right)\)
x2 - 4x - 21
= x2 - 2.x . 2 + 4 - 25
= ( x - 2 )2 - 52
= ( x - 2 + 5 ) ( x - 2 - 5 )
= ( x +3 ) ( x -7 )
\(x^2-2xy+y^2+4x-4y-5\)
\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)
\(=\left(x-y+2\right)^2-9\)
\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)
\(=\left(x-y+5\right)\left(x-y-1\right)\)
a, = (x^2-2xy+y^2)+(4x-4y)-5
= (x-y)^2+4.(x-y)-5
= [(x-y)^2+4.(x-y)+4]-9
= (x-y+2)^2-9
= (x-y+2-3).(x-y+2+3)
= (x-y-1).(x-y+5)
b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2
Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2
Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2
Vậy A chia hết cho 2 với mọi n thuộc N sao
Mà n thuộc N sao nên n.(n^2+1)+2 > 2
=> A là hợp số hay n^3+n+2 là hợp số
=> ĐPCM
Tk mk nha
x^2(x-3) - 4 ( x - 3) = (x^2 - 4) ( x - 3 ) = ( x -2 )( x + 2) ( x - 3)
= x2.(x - 3) - 4.(x - 3) = (x2 - 4). (x - 3) = (x - 2)(x +2).(x - 3)
A= 4x2 -4x +1 -4
= (2x -1)2- 22
= (2x-1+2).(2x-1-2)
=(2x-1).(2x-3)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
4x(4x+1)-3
\(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=\left(4x^2+6x\right)-\left(2x+3\right)\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)