Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3(x4+x+1)-(x2+x+1)2
=3(x2+x+1)(x2-x+1)-(x2+x+1)2
=(x2+x+1)[3(x2-x+1)-(x2-x+1)
=(x2+x+1)(3x2-3x+3-x2+x-1)
=(x2+x+1)(2x2-2x+2)
=(x2+x+1)2(x2-x+1)
bạn vu cong thien làm sai rồi.
\(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
chứ không phải là:
\(x^4+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)đâu!
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
Ta có:\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3x^4+3x^2+3-x^4-x^2-1-2x^3-2x-2x^2\)
\(=2x^4-2x^3-2x+2=2x^3\left(x-1\right)-2\left(x-1\right)=2\left(x^3-1\right)\left(x-1\right)\)
\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^4+x^2+1\right)-\left(x^4+x^2+1+2x^3+2x^2+2x\right)\)
\(=\left(x^4+x^2+1\right)\left(3-2x^3-2x^2-2x\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
\(=3\left(x^2+x+1\right)\left(x+x^2+x+1\right)\)
\(=3\left(x^2+x+1\right)\left(x^2+2x+1\right)\)
\(=3\left(x^2+x+1\right)\left(x+1\right)^2\)
Ta có : 3(x4 + x2 + 1) - (x2 + x + 1)2
= 3(x4 + x2 + 1) - x4 - x² - 1 - 2x3 - 2x - 2x2
= 3(x4 + x2 + 1) - (x4 + x² + 1) - 2(x3 + x + x2)
= 2(x4 + x2 + 1) - 2(x3 + x + x2)
= 2(x4 + x2 + 1 - x3 - x - x2)
= 2(x4 - x3 - x + 1)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+x^3+x\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)=3\left[\left(x^4-x^3+x^2\right)+\left(x^3+1\right)\right]-\left(x^2+x+1\right)\)
\(=3\left[x^2\left(x^2-x+1\right)+\left(x+1\right)\left(x^2-x+1\right)\right]-\left(x^2+x+1\right)\)
\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-1\right)\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+2\right)\)