Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+3\right)^2-\left(2x+6\right)\left(1-3x\right)+\left(3x+1\right)^2\)
\(=x^2+6x+9-\left(2x-6x^2+6-18x\right)+9x^2+6x+1\)
\(=10x^2+12x+10+6x^2+16x-6=16x^2+28x+4\)
\(=4\left(4x^2+7x+1\right)\)
\(3x^2-2x-1\)
\(=3x^2-3x+x-1\)
\(=3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(3x+1\right)\)
Ta có : 3x2 + 2x - 1
= 3x2 + 3x - x - 1
= 3x(x + 1) - (x + 1)
= (3x - 1) (x + 1)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
1 )
\(\left(2x-1\right)^2+\left(3x+1\right)^2+2\left(2x-1\right)\left(3x+1\right)=\left[\left(2x-1\right)+\left(3x+1\right)\right]^2=\left(5x\right)^2=25x^2\)
2 )
\(4x^4+1=\left(2x^2\right)^2+2.2x^2.1+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
1) \(\left(2x-1\right)^2+\left(3x+1\right)^2+2\left(2x-1\right)\left(3x+1\right)\)
\(=\left(2x-1+3x+1\right)^2\)
\(=\left(5x\right)^2=25x^2\)
MIK giải đc nhưng ngại lắm , mỏi tay ,đáp số nè:
\(\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2\)
\(=x^4+1+2x^2+3x^2+3x+2x^2\)
\(=x^4+3x^3+4x^2+3x+1\)
\(=x^4+x^3+2x^3+2x^2+2x^2+2x+x+1\)
\(=\left(x+1\right)\left(x^3+2x^2+2x+1\right)\)
Đặt \(x^2+1=a\) thay vào ta được :
\(a^2+3ax+2x^2\)
\(=a^2+ax+2ax+2x^2\)
\(=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+2x\right)\left(a+x\right)\)
\(=\left(x^2+1+2x\right)\left(x^2+1+x\right)\)
\(=\left(x+1\right)^2\left(x^2+x+1\right)\)
\(3x^2+2x-1\)
\(=3x^2+3x-x-1\)
\(=3x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-1\right)\)
=(x+1)(3x-1)