\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Đặt \(f=a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-a-b\right)\)

\(=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)

\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left[2ab-a^2-b^2+c\left(c^2-bc-ac+ab\right)\right]\)

\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)

\(=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)\)

\(\Rightarrow BT=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)-c\left(b-c\right)\left(a-c\right)\)

\(=\left(a+b\right)^2\left(a+b+c\right)\)

28 tháng 9 2018

       \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

Chúc bạn học tốt.