\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

1/ = x4 + 2x3 + 4x2 + 3x - 10 = (x4 - x3) + (3x3 - 3x2) + (7x2 - 7x) + (10x - 10)

= (x - 1)(x3 + 3x2 + 7x + 10) = (x - 1)[(x3 + 2x2) + (x2 + 2x) + (5x + 10)]

= (x - 1)(x + 2)(x2 + x + 5)

20 tháng 10 2016

2/ = (x- 2x4) + (x4 - 2x3) + (x3 - 2x2) + (x2 - 2x) + (x - 2) = (x - 2)(x4 + x3 + x2 + x + 1)

19 tháng 8 2016

1/ (x2 - 2)(x+ 2x + 2)

19 tháng 8 2016

2/ x- (x+ 2)= (x - x- 2)(x + x​+ 2)

14 tháng 2 2020

Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)

Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)

Ta có:

\(u^2+6v=7uv\)

\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)

Xét nốt nha!

14 tháng 2 2020

Câu b là phân tích các kiểu ra dạng như thế này nhé !

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok

22 tháng 10 2017

ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

Cho mình nhé hihi!!!

22 tháng 10 2017

x2(x+4)2-(x+4)2-(x2-1)

=(x+4)2  (x2-1)-(x2-1)

=(x2-1)(x2+8x+16-1)

=(x-1)(x+1)(x2+8x+15)

10 tháng 11 2016

x^3 - 4x^2 + 4x + 4x - 8

= (X^3 - 8) - (4x^2 - 4x - 4x)

= (x - 2)(x^2 + 2x + 4) - 4x( x - 2)

= (x - 2)(x^2 + 2x + 4 - 4x)

= (x - 2)(x^2 - 2x + 4)

b) 4x^2 - 25 - (2x - 5)(2x-  7)

= (2x - 5)(2x + 5) - (2x - 5)(2x - 7)

= (2x - 5)(2x + 5 - 2x + 7)

= 12(2x - 5)

c) x^3 + 27 + (x + 3)(x - 9)

= (x+3)(x^2-3x+9) + (x + 3)(x - 9)

= (x + 3) (x ^2 -3x + 9 + x - 9)

= (x + 3)(x^2 - 2x) = x(x - 2)(x + 3)

10 tháng 11 2016

dễ mà bạn ơi

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

1 tháng 1 2022

a) \(x^7+x^5+1\)

\(=x^7-x+x^5-x^2+x^2+x+1\)

\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

b) \(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

16 tháng 9 2016

A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)

B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)

16 tháng 9 2016

47554

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm