K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

b. (x^2)^2 + (2y^2)^2=(x^2)^2 + 4x^2y^2 + (2y^2)^2 - 4x^2y^2=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

8 tháng 10 2020

1) \(x^5-x^4-1\)

\(=x^5-x^4-1+x^3-x^3+x^2-x^2+x-x\)

\(=\left(x^5-x^3-x^2\right)-\left(x^4-x^2-x\right)+\left(x^3-x-1\right)\)

\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)

\(=\left(x^3-x-1\right)\left(x^2-x+1\right)\)

8 tháng 10 2020

2) \(x^8-3x^4+1\)

\(=x^8-3x^4+1+x^4-x^4\)

\(=\left(x^8-2x^4+1\right)-x^4\)

\(=\left(x^4-1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4-x^2-1\right)\left(x^4+x^2-1\right)\)

1 tháng 9 2020

B1:

a) \(5\left(x^2+y^2\right)-20x^2y^2\)

\(=5\left(x^2-4x^2y^2+y^2\right)\)

b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)

1 tháng 9 2020

B2: 

a) Đặt \(x^2-3x+1=y\)

=> \(y^2-12y+27\)

\(=\left(y^2-12y+36\right)-9\)

\(=\left(y-6\right)^2-3^2\)

\(=\left(y-9\right)\left(y-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)

b) Đặt \(x^2+7x+11=t\)

Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

29 tháng 7 2021

Trả lời:

a, x4 + 3x3 + x2 + 3x

= ( x4 + 3x3 ) + ( x2 + 3x )

= x3 ( x + 3 ) + x ( x + 3 )

= ( x3 + x ) ( x + 3 )

= x ( x2 + 1 ) ( x + 3 )

b, Sửa đề: x4 - x2 + 8x - 8

= ( x4 - x2 ) + ( 8x - 8 )

= x2 ( x2 - 1 ) + 8 ( x - 1 ) 

= x2 ( x - 1 ) ( x + 1 ) + 8 ( x - 1 )

= ( x - 1 ) [ x2 ( x + 1 ) + 8 ]

= ( x - 1 ) ( x3 + x2 + 8 )

29 tháng 7 2021

x+ 3x+ x2 + 3x = x3(x + 3) + x(x + 3)
= (x + 3)(x2 + 1)x

3 tháng 7 2019

Ta có: (3x + 1)2 - 4(x - 2)2 

= (3x + 1)2 - [2(x - 2)]2

= (3x + 1)2 - (2x - 4)2

= (3x + 1 - 2x + 4)(3x + 1 + 2x - 4)

= (x + 5)(5x - 3)