Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
1/ \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2=x^4+10x^3+32x^2+40x+16\)(làm tắt nhưng chắc bạn tự hiểu đc)
\(=\left(x^4+2x^3\right)+\left(4x^2+2x^3\right)+\left(12x^2+6x^3\right)+\left(4x^2+8x\right)+\left(12x^2+24x\right)+\left(8x+16\right)\)
\(=x^3\left(x+2\right)+2x^2\left(2+x\right)+6x^2\left(2+x\right)+4x\left(x+2\right)+12x\left(x+2\right)+8\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3+2x^2+6x^2+4x+12x+8\right)=\left(x+2\right)\left(x^3+8x^2+16x+8\right)\)
\(=\left(x+2\right)\left[\left(x^3+2x^2\right)+\left(6x^2+12x\right)+\left(4x+8\right)\right]=\left(x+2\right)\left[x^2\left(x+2\right)+6x\left(x+2\right)+4\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)
2/ \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=x^4+20x^3+140x^2+400x+400\)
\(=\left(x^4+10x^3+20x^2\right)+\left(10x^3+100x^2+200x\right)+\left(20x^2+200x+400\right)\)
\(=x^2\left(x^2+10x+20\right)+10x\left(x^2+10x+20\right)+20\left(x^2+10x+20\right)\)
\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)=\left(x^2+10x+20\right)^2\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
\(\text{a) }x^8+x^6+x^4+x^2\)
\(=\left(x^8+x^6\right)+\left(x^4+x^2\right)\)
\(=x^6\left(x^2+1\right)+x^2\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^6+x^2\right)\)
\(=x^2\left(x^2+1\right)\left(x^3+1\right)\)
\(=x^2\left(x^2+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
Bạn phát ơi bạn làm lại đc ko mk ghi thiếu đề
X8+X6+X4+X2+1
a, \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
a) \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^8-98x^4+1\)
\(=\left(x^4\right)^2+2\cdot x^4\cdot1+1^2-100x^4\)
\(=\left(x^4+1\right)^2-\left(10x^2\right)^2\)
\(=\left(x^4-10x^2+1\right)\left(x^4+10x^2+1\right)\)
= x^8 - x^7 + x^6 - x^5 + x^4 + x^7 - x^6 + x^5 - x^4 + x^3 + x^6 - x^5 + x^4 - x^3 + x^2 + x^5 - x^4 + x^3 - x^2 + x + x^4 - x^3 + x^2 - x + 1
= (x^8 - x^7 + x^6 - x^5 + x^4) + (x^7 - x^6 + x^5 - x^4 + x^3) + (x^6 - x^5 + x^4 - x^3 + x^2) + (x^5 - x^4 + x^3 - x^2 + x) + (x^4 - x^3 + x^2 - x + 1)
= x^4(x^4 - x^3 + x^2 - x + 1) + x^3(x^4 - x^3 + x^2 - x + 1) + x^2(x^4 - x^3 + x^2 - x + 1) + x(x^4 - x^3 + x^2 - x + 1) + (x^4 - x^3 + x^2 - x + 1)
= (x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)
2222222222222222222222222222222222222222222222222222222222223333333