Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\)
\(=\)\(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\)\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+11=t\) ta có :
\(=\)\(\left(t-1\right)\left(t+1\right)-8\)
\(=\)\(t^2-1-8\)
\(=\)\(t^2-9\)
\(=\)\(\left(t-3\right)\left(t+3\right)\)
\(=\)\(\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)\)
\(=\)\(\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
Chúc bạn học tốt ~
x(x+1)(x+2)(x+3) + 1
= x(x+3).(x+1)(x+2) + 1
= (x^2 + 3x) ( x^2 + 3x +2) + 1
Đặt x^2 + 3x = y ta có :
y .(y + 2)+ 1 = y^2 + 2y + 1 = (y + 1)^2
Thay y = x^2 + 3x ta có :
( y + 1)^2 = ( x^2 + 3x + 1)^2
x.(x+1).(x+2).(x+3)+1
=x.(x+3).(x+1).(x+2)+1
=(x2+3x)(x2+3x+2)+1
Đặt y=x2+3x ta được:
y.(y+2)+1
=y2+2x+1
=(y+1)2
thay y=x2+3x ta được:
(x2+3x)2
=[x.(x+3)]2
=x2.(x+3)2
Vậy x.(x+1).(x+2).(x+3)+1=x2.(x+3)2
a) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 + 2x + 2)(x2 - 2x + 2)
b) (x + 2)(x + 3)(x + 4)(x + 5) - 24 = (x + 2)(x + 5)(x + 3)(x + 4) - 24
= (x2 + 7x + 10)(x2 + 7x + 12) - 24
Đặt x2 + 7x + 10 = y => y(y + 2) - 24 = y2 + 2y - 24
= y2 + 6y - 4y - 24 = (y - 4)(y + 6) = (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)
= (x2 + 7x + 6)(x2 + 7x + 16) = (x2 + x + 6x + 6)(x2 + 7x + 16) = (x + 1)(x + 6)(x2 + 7x + 16)
\(x^2-10x+25\)
\(=x^2-2\cdot x\cdot5+5^2\)
\(=\left(x-5\right)^2\)
x^2 - 10x + 25
= x^2 - 5x - 5x + 5^2
= x(x - 5) - 5(x - 5)
= (x - 5)(x - 5)
\(x\left(x+y\right)-6x-6y\)
\(=x\left(x+y\right)-6\left(x+y\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
\(x^5-x\\ =x\left(x^4-1\right)\\ =x\left(x^2-1\right)\left(x^2+1\right)\\ =x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
Ta có: \(x^5-x\)
\(=x\left(x^4-1\right)\)
\(=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)