Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x^4+2\)
\(=x^5+x^4+x^2-x^2+1+1\)
\(=\left(x^5-x^2\right)+\left(x^4+x^2+1\right)\)
\(=\left(x^5-x^2\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x^3-1\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(\left(x^2+1\right)^2-x^2\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3+1-x\right)+1\)
\(x^4+64\)
\(=\left(x^2\right)^2+8^2+2x^2.8-2x^2.8\)
\(=\left(x^2+8\right)^2-\left(4x^2\right)\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
\(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4-2\right)^2-x^4\)
\(=\left(x^4-x^2-2\right)\left(x^4-x^2-2x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+1\right)\left(x^2+2\right)\)
\(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+\left(x^2+2xy+y^2\right)^2\)
\(=x^4+y^4+x^4+6x^2y^2+y^4+4x^3y+4xy^3\)
\(=2.\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)
\(=2.\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+2x^2y^2\)
\(=2.\left[\left(x^2+y^2\right)\left(x+y\right)^2+x^2y^2\right]\)
Sai thì thôi nhé~
\(x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2\left[\left(x^4+2x^3y+x^2y^2\right)+2\left(x^2+xy\right)y^2+y^4\right]\)
\(=2\left[\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+\left(y^2\right)^2\right]\)
\(=2\left(x^2+xy+y^2\right)^2\)
<=>x4-x+x2 +x+1= x (x-1) (x2+x+1) + (x2+x+1) = (x2+x+1)(x2-x+1)
chắc có lẽ đúng đó
\(x^4+3x^2-4\)
\(=x^4+4x^2-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2-1\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
Chúc bạn học tốt.
\(x^4+y^4\)
= \(\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2-2x^2y^2\)
= \(\left(x^2+y^2\right)^2-2x^2y^2\)
= \(\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Chúc bạn học tốt !!!
Bài làm
x4 + y4
= ( x2 )2 + 2x2y2 + ( y2 )2 - 2x2y2
= [ ( x2 )2 + 2x2y2 + ( y2 )2 ] - 2x2y2
= ( x2 + y2 )2 - 2x2y2
= ( x2 + y2 )2 - ( \(\sqrt{2}xy\))2
= ( x2 + y2 - \(\sqrt{2}xy\))( x2 + y2 + \(\sqrt{2}xy\))
# Học tốt #
x^4+4
=(x^2)^2+4x^2+4-4x^2
=(x^2+2)^2-4x^2
=(x^2-2x+2)(x^2+2x+2)
\(x^4+4=\left(x^2\right)^2+2^2\)
\(=\left(x^2+2\right)^2-2.x^2.2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)