K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Câu 1: Đa thức không phân tích được thành nhân tử

Câu 2:

\(x^3-8x^2+x+42\)

\(=x^3+2x^2-10x^2-20x+21x+42\)

\(=x^2(x+2)-10x(x+2)+21(x+2)\)

\(=(x^2-10x+21)(x+2)\)

\(=(x^2-3x-7x+21)(x+2)\)

\(=[x(x-3)-7(x-3)](x+2)=(x-3)(x-7)(x+2)\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Câu 3:

Đa thức không phân tích được thành nhân tử dù sửa dấu = thành cộng hoặc trừ.

10 tháng 9 2015

Như thế này : 

x^3 - 8x^2 + x + 42 = x^3 - 7x^2 - x^2 + 7x - 6x + 42

                               = ( x^3 - x^2 ) - ( 7x^2 - 7x ) - ( 6x - 42 )

                               = x^2.( x - 1 ) - 7x.( x - 1 ) - 6.( x - 7 )

                               = ( x^2 - 7x ).( x - 1 ) - 6.( x - 7 )

                               = x.( x- 7 ).( x - 1 ) - 6.( x - 7 )  =  [ x.( x - 1 ) - 6 ].( x - 7 ) 

x^4 + 5x^3 - 7x^2 - 41x - 30 = x^4 + 5x^3 - 7x^2 - 35x - 6x - 30

                                            = x.( x^3 + 6 ) + 5.( x^3 + 6 ) - 7x.( x + 5 )

                                            = ( x + 5 ) ( x^3 + 6 ) - 7x.( x + 5 ) 

                                            = ( x + 5 ).( x^3 - 7x + 5 )

CHÚC BẠN HỌC TỐT

 

2 tháng 9 2015

=> x (x3 + 5x2 - 7x - 41)

12 tháng 7 2016

a) \(x^4+3x^3-7x^2-27x-18\)

\(=\left(x^4+3x^3+2x^2\right)-\left(9x^2-27x-18\right)\)

\(=x^2\left(x^2+3x+2\right)-9\left(x^2+3x+2\right)=\left(x^2+x+2x+2\right)\left(x^2-9\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)

b) \(x^4+5x^3-7x^2-41x-30\)

\(=\left(x^4+2x^3-15x^2\right)+\left(3x^3+6x^2-45x\right)+\left(2x^2+4x-30\right)\)

\(=x^2\left(x^2+2x-15\right)+3x\left(x^2+2x-15\right)+2\left(x^2+2x-15\right)\)

\(=\left(x^2+2x-15\right)\left(x^2+3x+2\right)=\left(x^2+5x-3x-15\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)

c) \(x^6-14x^4+49x^2-36\)

\(=\left(x^6-9x^4\right)+\left(-5x^4+45x^2\right)+\left(4x^2-36\right)\)

\(=x^4\left(x^2-9\right)-5x^2\left(x^2-9\right)+4\left(x^2-9\right)\)

\(=\left(x^2-9\right)\left(x^4-5x^2+4\right)=\left(x^2-9\right)\left(x^4-4x^2-x^2+4\right)\)

\(=\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)

c: \(x^3-8x^2+x+42\)

\(=x^3+2x^2-10x^2-20x+21x+42\)

\(=\left(x+2\right)\left(x^2-10x+21\right)\)

\(=\left(x+2\right)\left(x-3\right)\left(x-7\right)\)

a: \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

12 tháng 8 2018

1, x3+ 6x2+11x+6

= x3 + 2x2 + 4x2 + 8x + 3x + 6 

= x2(x + 2) + 4x(x + 2) + 3(x + 2)

= (x + 2)(x2 + 4x + 3)

2, x4+3x3-7x2-27x-18

= x4 + 3x3 - 9x2 + 2x2 - 27x -18

= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)

= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)

= (x2 - 9)(x2 + 3x + 2)

= (x + 3)(x - 3)(x2 + 3x + 2)

3, x3-8x2+x+42

= x3 - 7x2 - x2 + 7x - 6x + 42

= (x3 - 7x2) - (x2 - 7x) - (6x - 42)

= x2(x - 7) - x(x - 7) - 6(x - 7)

= (x - 7)(x2 - x - 6) 

4, x4+5x3-7x2-41x-30 

= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30

= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)

= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)

= (x3 + 4x2 - 11x - 30)(x + 1)

5, x5+x-1

= x- x+ x+ x- x+ x- x2+ x -1 

= x3(x- x + 1)+ x2(x- x + 1)- (x- x + 1) 

= (x- x + 1)(x+ x- 1)

6, x5-x4-1

= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1 

= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)

= (x2 - x + 1)(x3 - x - 1)

12 tháng 8 2018

1, x 3+ 6x 2+11x+6

= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6

= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿

= ﴾x + 2﴿﴾x 2 + 4x + 3﴿

2, x 4+3x 3‐7x 2‐27x‐18

= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18

= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿

= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿

= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿

=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿

3, x 3‐8x 2+x+42

= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42

= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿

= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿

= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿

4, x 4+5x 3‐7x 2‐41x‐30

= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30

= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿

= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿

= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿

5, x 5+x‐1

= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1

= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿

= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1

= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1

= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿

= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿ 

16 tháng 10 2016

\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)

\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)

\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)

\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

17 tháng 8 2016

1)x2-8x-9

= x^2 - 9x +x -9

= x(x+1) - 9 (x+1)

= (x-9) (x+1)

2)x2+3x-18

3)x3-5x2+4x

=x^3 - 4x^2 - x^2 + 4x 

= x^2 (x-1) - 4x(x-1)

= (x^2 - 4x) (x-1)

= x(x-4)(x-1)

4)x3-11x2+30x

5)x3-7x-6

6)x16-64

\(=\left(x^8\right)^2-8^2\)

\(=\left(x^8-8\right)\left(x^8+8\right)\)

7)x3-5x2+8x-4

8)x2-3x+2

= x^2 - 2x - x +2

= x(x-1) -2(x-1)

= (x-2)(x-1)

17 tháng 8 2016

1)   \(\left(x-9\right)\left(x+1\right)\)             2)   \(\left(x-3\right)\left(x+6\right)\)                                           3)   \(x\left(x-4\right)\left(x-1\right)\)

4)    \(x\left(x-6\right)\left(x-5\right)\)         5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\)                               6)   ........

7)  \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)          8)   \(\left(x-2\right)\left(x-1\right)\)

28 tháng 10 2020

a) Ta có: \(x^4+3x^3-7x^2-27x-18\)

\(=x^4-3x^3+6x^3-18x^2+11x^2-33x+6x-18\)

\(=x^3\left(x-3\right)+6x^2\left(x-3\right)+11x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(x^3+6x^2+11x+6\right)\)

\(=\left(x-3\right)\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=\left(x-3\right)\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(x^3-8x^2+x+42\)

\(=x^3-7x^2-x^2+7x-6x+42\)

\(=x^2\left(x-7\right)-x\left(x-7\right)-6\left(x-7\right)\)

\(=\left(x-7\right)\left(x^2-x-6\right)\)

\(=\left(x-7\right)\left(x-3\right)\left(x+2\right)\)

c) Ta có: \(x^4+5x^3-7x^2-41x-30\)

\(=x^4+5x^3-7x^2-35x-6x-30\)

\(=x^3\left(x+5\right)-7x\left(x+5\right)-6\left(x+5\right)\)

\(=\left(x+5\right)\left(x^3-7x-6\right)\)

\(=\left(x+5\right)\left(x^3-x-6x-6\right)\)

\(=\left(x+5\right)\left[x\left(x^2-1\right)-6\left(x+1\right)\right]\)

\(=\left(x+5\right)\left[x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\right]\)

\(=\left(x+5\right)\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+5\right)\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

28 tháng 10 2020

a ) \(==>x^3.\left(x+3\right)-\left(7x^2+27x+18\right)\)

ko xét phần x^3.( x+3 ) nữa mà mik phân tích trong ngoặc nha zo thi ko lm như vậy mà ghi lại phần đó nha

\(7x^2+21x+6x+18\)

\(7x\left(x+3\right)+6\left(x+3\right)\)

\(\left(x+3\right)\left(7x+6\right)\)

==> \(x^3.\left(x+3\right)-\left(x+3\right)\left(7x+6\right)\)

==>\(\left(x+3\right)\left(x^3-7x-6\right)\)