\(x^{3m+1}+x^{3n+2}+1\left(m,n\inℕ\right)\)

Áp dụ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt x25 = t

=> x100 + x50 + 1 = t4 + t2 + 1 

= t4 + 2t2 + 1 - t2 

= (t2 + 1)2 - t2 

= (t2 - t + 1)(t2 + t + 1) 

= (x50 - x25 + 1)(x50 + x25 + 1)

2 tháng 10 2016

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

2 tháng 10 2016

giúp mình câu khác được ko? câu này mình biết làm òi

9 tháng 12 2017

Ta có:  \(P\left(x\right)=x^4+6x^3+7x^2-6x+1\)

                        \(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

                        \(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

                        \(=\left(x^2+3x-1\right)^2\)

15 tháng 7 2017

Đặt \(x^2-2x=a\)

\(\Rightarrow a\left(a-1\right)-6=a^2-a-6=\left(a^2+2a\right)+\left(-3a-6\right)=\left(a+2\right)\left(a-3\right)\)

5 tháng 8 2016

Ta có : \(M=7\sqrt{x-1}-\sqrt{x^3-x^2}+x-1\)

\(=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+x-1\)

\(=7\sqrt{x-1}-x\sqrt{x-1}+\left(\sqrt{x-1}\right)^2\)

\(=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)

\(=\sqrt{x-1}\left(\sqrt{x-1}+2\right)\left(\sqrt{x-1}-3\right)\)

6 tháng 8 2016

CẢM ƠN BẠN

18 tháng 7 2019

\(x^2-16+2\left(x+4\right)\)

\(=\left(x+4\right)\left(x-4\right)+2\left(x+4\right)\)

\(=\left(x+4\right)\left(x-4+2\right)\)

\(=\left(x+4\right)\left(x-2\right)\)

18 tháng 7 2019

\(x^2-16+2\left(x+4\right)=x^2+2x-8=x^2-2x+4x-8\)

\(=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\)

24 tháng 10 2018

\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)

\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)

\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)

2 tháng 5 2017

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)

\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

29 tháng 9 2020

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=\left(\sqrt{x}\right)^2.y-y\sqrt{x}+\sqrt{x}-1\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1\)

\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

31 tháng 10 2017

\(=x+2\sqrt{xy}+y-9\)

\(=\left(\sqrt{x}+\sqrt{y}\right)^2-3^2\)

\(=\left(\sqrt{x}+\sqrt{y}-3\right)\left(\sqrt{x}+\sqrt{y}+3\right)\)

2 tháng 11 2017

Cảm ơn bạn nha

Mình làm được rồi

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)

\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)

21 tháng 8 2018

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)

\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)

\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)

\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)

23 tháng 10 2019

\(\left(x^2+4x+6\right)\left(x^2+6x+6\right)-3x^2\left(1\right)\)

Đặt \(x^2+5x+6=t\)Thay vào (1) ta được:

\(\left(t-x\right)\left(t+x\right)-3x^2\)

\(=t^2-x^2-3x^2\)

\(=t^2-4x^2\)

\(=\left(t-2x\right)\left(t+2x\right)\)Thay \(t=x^2+5x+6\)ta được:

\(\left(x^2+5x+6-2x\right)\left(x^2+5x+6+2x\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+3x+6\right)\left(x^2+x+6x+6\right)\)

\(=\left(x^2+3x+6\right)\left[x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=\left(x^2+3x+6\right)\left(x+1\right)\left(x+6\right)\)