Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)

a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
Đặt x^2 - 3x - 1 = A
\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)
\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)
\(=\left(A-9\right)\left(A-3\right)\)
Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
c)\(x^3-x^2-5x+125\)
\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Mình có việc bận nên chỉ đưa được kết quả ý d) thật lòng mong các bạn tự tham khảo và giải

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

Sửa đề chút :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3\)
\(=3x^2y+3xy^2+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
c) x3 + y3 + z3 - 3xyz
= x3 + 3x2y + 3xy2 + y3 + z3 - 3xyz - 3x2y - 3xy2
= (x+y)3 + z3 - 3xy.( z+x+y)
= (x+y+z).[(x+y)2 - (x+y).z + z2 ] - 3xy.(x+y+z)
= (x+y+z). ( x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x+y+z) .(x2 + y2 + z2 - xy - xz -yz)
e) (a+b-c)2 - (a-c)2 - 2ab + 2bc
= (a+b-c - a+c).(a+b+c+a-c) - 2b.(a-c)
= b.(2a+b) - 2b.(a-c)
= b.(2a+b - a +c)
= b.( a+b+c)
xl bn nha! mk chỉ nghĩ đk 2 câu thoy, 1 câu bn kia làm r! 2 câu còn lại bn đợi người tiếp theo làm nhé

a) \(\left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]\)
\(=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)\)
\(=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)\)
Cô nghĩ phân tích đa thức này sẽ đẹp hơn:
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)
\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\right)^2\right]\)
\(=\left(x-z\right)\left(3y^2-3xy+3zx-3xyz\right)\)
\(=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
b) \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)
\(=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz\)
\(=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)\)
\(=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)\)
\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)
\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
a) \left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3(x−y)2+(y−z)3+(z−x)3
=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]=(x−y)2+(y−z+z−x)[(y−z)2−(y−z)(z−x)+(z−x)2]
=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)=(x−y)2+(y−x)(x2+y2+3z2−3yz+xy−3xz)
=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)=(x−y)(x−y−x2−y2−3z2+3yz−xy+3xz
\left(x-y\right)^3+\left(y-z\right)^3+\left
=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3
=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\l
=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\
=\left(x-z\right)\left(
=3\left(x-y\right)\lefb) \left(x+y+z\right)\left(xy+yz+zx\right)-xyzb)(x+y+z)(xy+yz+zx)−xyz
=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz=(xy+yz+zx)(x+y+z)−xyz
=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz=xy(x+y+z)+(yz+zx)(x+y+z)−xyz
=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)=xy(x+y+z−z)+(yz+zx)(x+y+z)
=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)=xy(x+y)+z(y+x)(x+y+z)
=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]=(x+y)[xy+z(x+y+z)]
=\left(x+y\right)\left(xy+zx+zy+z^2\right)=(x+y)(xy+zx+zy+z2)
=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=(x+y)[x(y+z)+z(y+z)]
=\left(x+y\right)\left(y+z\right)\left(z+x\right)=(x+y)(y+z)(z+x)

o: \(x^3-xy^2+x^2y-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
p: \(a^3-ma-mb+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)-m\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2-m\right)\)
q: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=\left(3x+1\right)^3+\left(2x-1\right)^3\)
\(=\left(3x+1+2x-1\right)\left[\left(3x+1\right)^2-\left(3x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\right]\)
\(=5x\left[9x^2+6x+1-6x^2+3x-2x+1+4x^2-4x+1\right]\)
\(=5x\left(7x^2+5x+3\right)\)
a) x2 + xy - 2y2 = (x2 + xy + \(\dfrac{1}{4}\)y2) - \(\dfrac{9}{4}\)y2 = (x + \(\dfrac{1}{2}\)y)2 - (\(\dfrac{3}{2}\)y)2 = (x + \(\dfrac{1}{2}\)y - \(\dfrac{3}{2}\)y)(x + \(\dfrac{1}{2}\)y + \(\dfrac{3}{2}\)y) = (x - y)(x + 2y)
b) x5 + x + 1 = (x5 + x4 + x3) - (x4 + x3 + x2) + (x2 + x + 1) = x3(x2 + x + 1) - x2(x2 + x + 1) + (x2 + x + 1) = (x3 - x2 + 1)(x2 + x + 1)
Phân tích nốt cái x3 - x2 + 1 là xong. Đoạn này mình bấm máy 500MS không rõ nghiệm chính xác là bao nhiêu nên để dành cho bạn làm đó