Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x^2 + 2xy + y^2 - x - y - 12
= (x^2 + 2xy + y^2) - (x + y) - 16 + 4
= (x + y)^2 - 4^2 - (x + y - 4)
= (x + y - 4)(x + y + 4) - (x + y - 4)
= (x + y - 4)(x + y + 4 - 1)
= (x + y - 4)(x + y + 3)
b, x^6 + 27
= (x^2)^3 + 3^3
= (x^2 + 3)[(x^2)^2 - 3x^2 + 3^2]
= (x^2 + 3)(x^4 - 3x^2 + 9)
c, x^7 + x^5 + 1
=x^7 - x^6 + x^5 - x^3 + x^2 + x^6 - x^5 + x^4 - x^2 + x + x^5 - x^4 + x^3 - x + 1
= (x^2 + x + 1)(x^5 - x^4 + x^3 - x+1)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
x2 -4x2y2 +y2 +2xy =( x2 +2xy +y2) -(2xy)2 =(x+y)2 -(2xy)2 =(x+y+2xy)(x+y-2xy)
Cách 1: \(x^2-2xy+y^2+4x-4y-5=\left(y^2-xy+y\right)+\left(-xy+x^2-x\right)+\left(-5y+5x-5\right)\)
\(=y\left(y-x+1\right)-x\left(y-x+1\right)-5\left(y-x+1\right)=\left(y-x+1\right)\left(y-x-5\right)\)
Cách 2: \(x^2-2xy+y^2+4x-4y-5=\left(x^2+y^2+2^2-2xy+4x-4y\right)-9\)
\(=\left(y-x-2\right)^2-3^2=\left(y-x-2-3\right)\left(y-x-2+3\right)=\left(y-x-5\right)\left(y-x+1\right)\)
a)xz-yz -x2 +2xy-y2=(xz-yz)-(x2-2xy+y2)=z(x-y)-(x-y)2=(x-y)(z-x+y)
b) x2+8x+15= (x2+3x)+(5x+15)=x(x+3)+5(x+3)=(x+3)(x+5)
c) x2-x-12=(x2-4x)+(3x-12)=x(x-4)+3(x-4)=(x-4)(x+3)
a) xz - yz - x2 + 2xy - y2
= (xz - yz) - (x2 - 2xy + y2)
= z (x - y) - (x - y)2
= z (x - y) - (x - y) (x - y)
= [z - (x - y)] (x - y)
= (z - x + y) (x - y)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= (x2 + 3x) + (5x + 15)
= x (x + 3) + 5 (x + 3)
= (x + 5) (x + 3)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= (x2 - 4x) + (3x - 12)
= x (x - 4) + 3 (x - 4)
= (x + 3) (x - 4)
#Học tốt!!!
~NTTH~
Easy \(x^2-n^2-2xy+y^2-m^2+2mn\)
\(=\left(x^2-2xy+y^2\right)-\left(n^2-2mn+m^2\right)\)
\(=\left(x-y\right)^2-\left(n-m\right)^2\)
\(=\left(x-y-n+m\right)\left(x-y+n-m\right)\)
\(x^2-n^2-2xy+y^2-m^2+2mn\)
\(=\left(x^2-2xy+y^2\right)-\left(n^2-2mn+m^2\right)\)
\(=\left(x-y\right)^2-\left(n-m\right)^2\)
\(=\left(x-y-n+m\right)\left(x-y+n-m\right)\)
a, \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
b,\(x^2+2xy+y^2+x^2-y^2=\left(x+y\right)^2+\left(x-y\right)\left(x+y\right)\)\(=\left(x+y\right)\left(x+y+x-y\right)=2x\left(x+y\right)\)
A = x^2 + y^2 + 2xy - 2x -2y +1
= (x+y)^2 -2.(x+y) + 1
=(x+y -1 )^2
\(x^2\) + 2\(xy\) + y2 - \(x-y\) - 12
= (\(x^2\) + 2\(xy\) + y2) - 16 + 4 - (\(x+y\))
= (\(x+y\))2 - 42 + 4 - (\(x+y\))
= (\(x+y\) - 4)(\(x+y\) + 4) - (\(x+y\) - 4)
= (\(x+y\) - 4)(\(x+y\) + 4 - 1)
= (\(x+y-4\))[\(x+y\) + (4-1)]
= (\(x+y\) - 4)(\(x+y\) + 3)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
=(x+y-4)(x+y+3)