Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-6x+25\)
\(=\left(x^2-6x\right)+25\)
\(=\left(x^2-6x+3^2\right)+16\)
\(=\left(x-3\right)^2+16\)
Ta có \(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+16\ge16\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy GTNT của A là 16 khi x = 3
a) \(A=x^2-6x+25\)
\(A=x^2-2.x.3+9-9+25\)
\(A=\left(x-3\right)^2+16\)
Vì \(\left(x-3\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
\(\Rightarrow Amin=16\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy Amin = 16 <=> x = 3
b) \(B=5x^2-4x+3\)
\(B=5\left(x^2-\dfrac{4}{5}x+\dfrac{3}{5}\right)\)
\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}-\dfrac{4}{25}+\dfrac{3}{5}\right)\)
\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{11}{25}\right)\)
\(B=5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\)
Vì \(5\left(x-\dfrac{2}{5}\right)^2\ge0\) với mọi x
\(\Rightarrow5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\ge\dfrac{11}{5}\)
\(\Rightarrow Bmin=\dfrac{11}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Rightarrow x=\dfrac{2}{5}\)
Vậy Bmin = 11/5 <=> x = 2/5
c) \(C=x^2-4xy+5y^2-4y+13\)
\(C=x^2-2.x.2y+\left(2y\right)^2+y^2-2.y.2+4+9\)
\(C=\left(x-2y\right)^2+\left(y-2\right)^2+9\)
Vì \(\left(x-2y\right)^2+\left(y-2\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x-2y\right)^2+\left(y-2\right)^2+9\ge9\)
\(\Rightarrow Cmin=9\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
Vậy Cmin = 9 <=> x = 4 và y = 2
\(a)x^2-6x-y^2+9\)
\(=x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
\(b)\)\(x^2-2xy+y^2-xz+yz\)
\(=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)
Dấu '=' xảy ra khi x=-1
\(B=-\left(x^2+4x-1\right)\)
\(=-\left(x^2+4x+4-5\right)\)
\(=-\left(x+2\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-2
\(C=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu '=' xảy ra khi x=-4
\(D=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)
Dấu '=' xảy ra khi x=-1/2
a , \(-q^3+12q^2x-48qx^2+64x^3\)
\(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)
\(=\)\(-\left(q-4x\right)^3\)
b , x2 + 2xy - y2 - 9
= - ( x2 - 2xy + y2 ) - 9
= - ( x - y )2 - 9
= ( - x + y - 3 ) ( x - y + 3 )
3 , 1 - m2 + 2mn - n2
= 1 - ( m2 - 2mn + n2 )
= 1 - ( m - n )2
= ( 1 - m + n ) ( 1 + m - n )
4 , x3 - 8 + 6a2 - 12a
= x3 + 6a2 - 12a + 8
= x3 + 6a2 - 12a + 4 + 4
= x3 + ( 6a2 - 12a + 4 ) + 4
= x3 + ( 3a - 2 )2 + 4
= ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )
( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )
5 , x2 - 2xy + y2 - xz - yz
= ( x2 - 2xy + y2 ) - ( xz + yz )
= ( x - y )2 - z ( x + y )
= ( x - y ) 2 - z ( x - y )
= ( x - y ) ( x - y - z )
6 , x2 - 4xy + 4y 2 - z2 + 4z - 4t2
=( x2 - 4xy + 4y 2 ) - (z2 - 4z +4 ) . t2
= ( x - y )2 - ( z - 2 )2 . t2
= ( x - y - z - 2 ) ( x - y + z - 2 ) t2
7 , 25 - 4x2 - 4xy - y2
= 25 + ( - 4x2 - 4xy + y2 )
= 25 + ( 2x - y )2
= ( 5 + 2x - y ) ( 5 + 2x + y )
8 ,
x3 + y3 + z3 - 3xyz
= (x+y)3 - 3xy (x - y ) + z3 - 3xyz
= [ ( x + y)3 + z3 ] - 3xy ( x + y + z )
= ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z )
= ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ]
= ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
a, 25-x2+4xy-4y2
= 25-(x2-4xy+4y2)
= 52-(x-2y)2
= (5-x+2y)(5+x-2y)
Các biểu thức sau bạn tự chứng minh nhé
Bài 1:
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-9+6x-x^2=-\left(3-x\right)^2\)
c) \(x^2+4y^2+4xy=x^2+4xy+4y^2=\left(x+2y\right)^2\)
Chúc bạn học tốt!
1)
a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)
b) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
c) \(x^2+4y^2+4xy=\left(x+2y\right)^2\)
2)
a) \(x^3-0,25x=0\)
Bài này có nghiệm x khủng bố lắm, có lẽ đề sai rồi. Nếu đề là 0,125 thì còn làm được...
b) \(x^2-10x=-25\)
\(x^2-10x+25=0\)
\(\left(x-5\right)^2=0\)
\(x-5=0\Rightarrow x=5\)
(\(x^2\) - 4\(xy\) + 4y2) - 25
= (\(x\) - 2y)2 - 25
= (\(x-2y\) - 5)(\(x-2y\) + 5)