\(\left(x^2+x+1\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

Đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

17 tháng 11 2021

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

\(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)

\(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)

\(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)

\(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)

\(\left(x^2+x+5\right)\left(x^2+x-2\right)\)

16 tháng 9 2016

A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)

B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)

16 tháng 9 2016

47554

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm 

22 tháng 12 2016

a)

\(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

b)

Đặt \(x^2+3x+1=t\), ta có:

\(t\left(t+1\right)-6\)

\(=t^2+t-6\)

\(=t^2+3x-2x-6\)

\(=t\left(t+3\right)-2\left(t+3\right)\)

\(=\left(t+3\right)\left(t-2\right)\)

22 tháng 12 2016

a, \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)

\(=\left(x^2+3x+1,5\right)^2-2,5^2\)

\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)

\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)

22 tháng 10 2017

ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

Cho mình nhé hihi!!!

22 tháng 10 2017

x2(x+4)2-(x+4)2-(x2-1)

=(x+4)2  (x2-1)-(x2-1)

=(x2-1)(x2+8x+16-1)

=(x-1)(x+1)(x2+8x+15)

6 tháng 10 2016

sai đề

 

6 tháng 10 2016

Sai đề nhé bạn

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\)

Đa thức trở thành \(t\left(t+1\right)-12\)

\(=t^2+t-12\)

\(=t^2+3t-4t-12\)

\(=t\left(t+3\right)-4\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)

Thay vào ta được 

\(\left(x^2+x+4\right)\left(x^2+x-3\right)\)

31 tháng 10 2016

đề sai rồi bạn ơi

31 tháng 10 2016

Sai đề rồi đa thức này không có nghiêm làm sao phân tích được