\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

Giúp m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

           ~ Chúc bạn học tốt~

6 tháng 11 2017

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2yz+3xy^2z+3xyz^2+y^3+z^3-x^3-y^3-z^3\)

\(=3x^2yz+3xy^2z+3xyz^2\)

\(=3xyz\left(x+y+z\right)\)

8 tháng 12 2017

Mk sửa lại đề nha:

         x3 + y3 + z3 - 3xyz

= (x + y)3 + z3 - 3x2y - 3xy2 - 3xyz

= (x + y + z)[ (x + y)2 - z(x + y) + z2 ] - 3xy(x + y + z)

= (x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy)

= (x + y + z)(x2 + y2 + z2 - xy - yz - zx)

15 tháng 8 2017

Đặt y-z=-[(x-y)+(z-x)]

Thay vào rồi cm nha bạn

4 tháng 8 2019

Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)

Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Hay \(A=3\cdot2x\cdot2y\cdot2z\)

\(A=24xyz\)

11 tháng 5 2020

Đặt: x - y = a ; 3x + y - z = b ; -4x + z = c 

Ta có: a + b +  c  = x - y + 3x + y - z - 4x + z = 0 

Khi đó: \(\left(x-y\right)^3+\left(3x+y-z\right)^3+\left(-4x+z\right)^3\)

\(a^3+b^3+c^3\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)

\(0.\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)

\(3abc\)

\(3\left(x-y\right)\left(3x+y-z\right)\left(-4x+z\right)\)

12 tháng 5 2020

cảm ơn ạ 

23 tháng 9 2016

a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3x^2y+3x^2z+3y^2z+3xy^2+3xz^2+3yz^2+6xyz-x^3-y^3-z^2\) 

\(=3x^2y+3xy^2+3x^2z+3xz^2+3y^2z+3yz^2+6xyz\)

\(=3xy\left(x+y\right)+3xz\left(x+z\right)+3yz\left(y+z\right)+6xyz\)

\(=3\left[xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+2xyz\right]\)

\(=3\left[xy\left(x+y\right)+x^2z+xz^2+y^2z+yz^2+2xyz\right]\)

\(=3\left[xy\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+yz\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

23 tháng 9 2016

b)  \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(y-2z+x\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-y+2z-x\right)\)

\(=\left(x-z\right)\left(x-y\right)\left(3z-3y\right)\)

\(=3\left(x-z\right)\left(x-y\right)\left(z-y\right)\)