Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài a) nhóm thành 2 nhóm; nhóm thứ nhất gồm số hạng đầu và cuối
bài b) dùng hằng đẳng thức là đc rồi
a,Ta có: \(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27=x^2(x+3)-7x(x+3)+9(x+3)=(x+3)(x^2-7x+9)\)b,
\(25(x-y)^2-16(x+y)^2=(5x-5y+4x+4y)(5x-5y-4x-4y)=(9x-y)(x-9y)\)c,\(x^4+x^3+x+1=x^3(x+1)+(x+1)=(x^3+1)(x+1)=(x+1)^2(x^2-x+1)\)d, \(x(x+1)^2+x(x-5)-5(x+1)^2=(x+1)^2(x-5)+x(x-5)=(x-5)(x^2+3x+1)\)e,\(x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)\)f,\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30=(x-5)(x^2+5x+6)=(x-5)(x^2+2x+3x+6)=(x-5)(x+2)(x+3)\)
nãy bài 1 mk gửi thiếu 1 ý
\(x^2y+xy^2-x+y\)
có ai giúp mk ý này k
bài 2 thì k cần lm cũng đc nhé vì mk biết làm rùi còn mỗi ý này thui hu hu
a, = [(x-2).(x+1)]^2+(x-2)^2
= (x-2)^2.(x+1)^2+(x-2)^2
= (x-2)^2.[(x+1)^2+1]
= (x-2)^2.(x^2+2x+2)
Tk mk nha
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)
Nhiều quá cho đáp số thôi nhé
a/ \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1=\left(x^2-7x+11\right)^2\)
b/ \(x^4+2015x^2+2014x+2015=\left(x^2-x+2015\right)\left(x^2+x+1\right)\)
c/ \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
d/ \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=\left(x-1\right)^2\left(x^2-5x+1\right)\)
e/ \(12x^3+16x^2-5x-3=\left(2x-1\right)\left(2x+3\right)\left(3x+1\right)\)
b,\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{bc}{abc}+\dfrac{ac}{bac}+\dfrac{ab}{abc}=0\)
=>\(\dfrac{ab+ac+bc}{abc}=0\)
=>ab+ac+bc=0
=>ab=-ac-bc
ac=-ab-bc
bc=-ab-ac
N=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
N=\(\dfrac{1}{a^2+bc+bc}+\dfrac{1}{b^2+ca+ca}+\dfrac{1}{c^2+ab+ab}\)
N=\(\dfrac{1}{a^2-ab-ac+bc}+\dfrac{1}{b^2-ab-bc+ca}+\dfrac{1}{c^2-ac-bc+ab}\)
N=\(\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-a\right)-c\left(b-a\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
N=\(\dfrac{1}{\left(a-c\right)\left(a-b\right)}+\dfrac{1}{\left(b-c\right)\left(b-a\right)}+\dfrac{1}{\left(c-b\right)\left(c-a\right)}\)
N=\(\dfrac{b-c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}-\dfrac{a-c}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\dfrac{a-b}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)
N=\(\dfrac{b-c-a+c+a-b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)=0
a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=x^4-2x^3+2x^2+4x^2-8x+8\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+2x+1\)
\(=\left(2x+1\right)\left(4x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left[\left(3x^2\right)\left(x^2+x+1\right)+3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)
a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left(x^4-2x^3+5x^2-4x+4\right)+\left(x^2-4x+4\right)\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)
\(x^4-9x^3+28x^2-36x+16\)
\(=x^4-x^3-8x^3+8x^2+20x^2-20x-16x+16\)
\(=\left(x^4-x^3\right)-\left(8x^3-8x^2\right)+\left(20x^2-20x\right)-\left(16x-16\right)\)
\(=x^3\left(x-1\right)-8x^2\left(x-1\right)+20x\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-2x^2-6x^2+12x+8x-16\right)\)
\(=\left(x-1\right)[x^2\left(x-2\right)-6x\left(x-2\right)+8\left(x-2\right)]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-4x-2x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)[x\left(x-4\right)-2\left(x-4\right)]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
Rình mãi ms được 1 câu!
Bài 3:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(A=\left[\left(x+1\right).\left(x+7\right)\right].\left[\left(x+3\right).\left(x+5\right)\right]+15\)
\(A=\left(x^2+7x+x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(A=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Đặt \(t=x^2+8x+7\Rightarrow t+8=x^2+8x+15\)
\(\Rightarrow A=t.\left(t+8\right)+15\)
\(A=t^2+8t+15=t^2+3t+5t+15\)
\(A=\left(t^2+3t\right)+\left(5t+15\right)=t.\left(t+3\right)+5.\left(t+3\right)\)
\(A=\left(t+3\right).\left(t+5\right)\)
Vì \(t=x^2+8x+7\) nên
\(A=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(A=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(A=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(A=\left(x^2+8x+10\right).\left[\left(x^2+2x\right)+\left(6x+12\right)\right]\)
\(A=\left(x^2+8x+10\right).\left[x.\left(x+2\right)+6.\left(x+2\right)\right]\)
\(A=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
Chúc bạn học tốt!!!
\(x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
[(x+2)(x+5)][(x+3)(x+4)] -24
= (x2+7x+10)(x2+7x+12) -24
=(x2+7x+11-1)(x2+7x+11+1) -24
=(x2+7x+11)2-1-24
=(x2+7x+11)2 -25
=(x2+7x+11-5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)
✽
cảm ơn nhiều nha