Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3+y3+z3-3xyz
=(x+y)3+z3-3x2y-3xy2-3xyz
=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)
=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)
=(x+y+z)(x2+y2+zx+zy+z2-zy)
b)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)
=b.(a2-c2)-ac.(a-c)-b2.(a-c)
=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)
=(a-c)[b.(a+c)-ac-b2]
=(a-c)(ab+bc-ac-b2)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\)
a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z+y^2\left(z-x\right)+z^2x-z^2y\)
\(=\left(x^2y-z^2y\right)+\left(z^2x-x^2z\right)+y^2\left(z-x\right)\)
\(=y\left(x+z\right)\left(x-z\right)-xz\left(x-z\right)-y^2\left(x-z\right)\)
\(=\left(x-z\right)\left(xy+yz-xz-y^2\right)\)
\(=\left(x-z\right)\left[\left(xy-xz\right)+\left(yz-y^2\right)\right]\)
\(=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
a) Đặt a+b-c=x , b+c-a=y, c+a-b=z
\(\Rightarrow\left(a+b+c\right)^3-x^3-y^3-z^3\)
Có x + y +z = a+b-c + b+c-a+c+a-b = a+b+c
\(\Rightarrow\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z^3\right]-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Áp dụng hằng đẳng thức trên ta có
3(a+b-c+b+c-a)(b+c-a+c+a-b)(a+b-c+c+a-b)
= 3.2b.2c.2a
= 24abc