\(a,2x^3y-2xy^3-4xy^2-2xy\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

c, \(x^2\) + 5x + 6

= \(x^2\) + 2x + 3x +6

= (\(x^2\) + 2x) + (3x + 6)

= x(x + 2) + 3(x + 2)

= (x + 2)(x + 3)

11 tháng 12 2018

b, \(2x^3y-2xy^3-4xy^2-2xy\)

= 2xy(\(x^2\) - \(y^2\) - \(2y\) - 1)

= 2xy(\(x^2-\left(y^2+2y+1\right)\))

= 2xy(\(x^2\) \(-\left(y+1\right)^2\))

= 2xy(\(x^2-y-1\))(\(x^2+y+1\))

11 tháng 12 2018

\(x^2+5x+6\)

\(=x^2+3x+2x+6\)

\(=x.\left(x+3\right)+2.\left(x+3\right)=\left(x+3\right).\left(x+2\right)\)

11 tháng 12 2018

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu

23 tháng 7 2018

\(a.4x^3-8x^2+4xy^3=4x\left(x^2-8x+y^3\right)\)

\(b.x^2+2xy+y^2-36=\left(x+y\right)^2-36=\left(x+y-6\right)\left(x+y+6\right)\) \(c.x^2-2xy+y^2-25=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\) \(d.x^2-5x+2xy-5y+y^2=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\) \(e.49+2xy-x^2-y^2=-\left(x^2-2xy+y^2-49\right)=-\left[\left(x-y\right)^2-49\right]=-\left(x-y-7\right)\left(x-y+7\right)\) \(f.3x^2-6x+3-3y^2=3\left(x^2-2x-y^2+1\right)\)

\(g.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)\left(x+1\right)\)

\(h,\) giống câu f.

\(i.x^3-2x^2y+xy^2-64x=x\left(x^2-2xy+y^2-64\right)=x\left[\left(x-y\right)^2-64\right]=x\left(x-y-8\right)\left(x-y+8\right)\) \(k.3x+3y-x^2-2xy-y^2=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

20 tháng 4 2017

Bài giải:

a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2

= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]

= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)

= (x – y)2 – (z – t)2

= [(x – y) – (z – t)] . [(x – y) + (z – t)]

= (x – y – z + t)(x – y + z – t)

2 tháng 6 2017

48. Phân tích các đa thức sau thành nhân tử:

a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;

c) x2 – 2xy + y2 – z2 + 2zt – t2.

Bài giải:

a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2

= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]

= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)

= (x – y)2 – (z – t)2

= [(x – y) – (z – t)] . [(x – y) + (z – t)]

= (x – y – z + t)(x – y + z – t)

4 tháng 11 2016

a , 3x2 + 3y2 - 6xy - 12

= 3 ( x2 + y2 - 2xy - 4 )

= 3 ( x - y )2 - 22

= 3 ( x - y + 2 ) ( x - y - 2 )

 

 

3 tháng 8 2020

a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)

b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)

c.  \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)

3 tháng 8 2020

e. \(2x^4+7x^2+3\)

\(=2x^4+x^2+6x^2+3\)

\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)

\(=\left(x^2+3\right)\left(2x^2+1\right)\)