Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/\(4x^2-12+9\)
\(=\left(2x\right)^2-2.2.3+3^2\)
\(=\left(2x+3\right)^2\)
B/\(11x+11y-x^2-xy\)
\(=\left(11x-x^2\right)+\left(11y-xy\right)\)
\(=x\left(11-x\right)+y\left(11-x\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
C/\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
Ta có ; x2 - 11x + 24
= x2 - 3x - 8x + 24
= x(x - 3) - (8x - 24)
= x(x - 3) - 8(x - 3)
= (x - 3)(x - 8)
a) \(36-4x^2+4xy-y^2\)
\(=36-\left(2x-y\right)^2\)
\(=\left(6+2x-y\right)\left(6-2x+y\right)\)
b) \(2x^4+3x^2-5\)
\(=2x^4-2x^2+5x^2-5\)
\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(2x^2+5\right)\left(x+1\right)\left(x-1\right)\)
Mai cho bn đấy tui dg định off =))
a)\(11x+11y-x^2-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
b)\(x^2-xy-8x+8y\)
\(=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
c)\(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
d)\(x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
a) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
b) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
c) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
d) \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
1/
a) \(x^2+4y^2+4xy-16\)
\(=x^2+2.2xy+\left(2y\right)^2-4^2\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
b) ta có:
\(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)
\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)
\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)
\(=y^2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x
nên tại y = 10
giá trị của biểu thức trên bằng y2 = 102 = 100
a) Ta có: \(11x+11y+x^2+xy\)
\(=11\left(x+y\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(11+x\right)\)
b) Ta có: \(225-4x^2-4xy-y^2\)
\(=225-\left(4x^2+4xy+y^2\right)\)
\(=15^2-\left(2x+y\right)^2\)
\(=\left(15-2x-y\right)\left(15+2x+y\right)\)
Câu a không sai đề đâu bạn