\(\left(x+5\right)^5-x^5-y^5\)

b )...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

a ) Khai triển : \(\left(x+y\right)^5\) theo nhị thức Newton , ta có :

Đặt \(A=\left(x+y\right)^5-x^5-y^5\)

\(=5x^4y+10x^3y^2+10x^2y^3+5xy^4\)

\(=5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right);2x^2y+2xy^2=2xy\left(x+y\right)\)

Do đó : \(A=5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

b ) Đặt \(B=a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+cc^2\left(c-a-b\right)\)

\(=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)

\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left(2ab-a^2-b^2+c\left(c^2-bc-ac+ab\right)\right)\)

\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)

\(=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)\)

\(A=B-c\left(b-c\right)\left(a-c\right)=\left(a+b\right)^2\left(a+b-c\right)\).

1 tháng 1 2022

a) \(x^7+x^5+1\)

\(=x^7-x+x^5-x^2+x^2+x+1\)

\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

b) \(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

3 tháng 8 2019

Đặt \(f=a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-a-b\right)\)

\(=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)

\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left[2ab-a^2-b^2+c\left(c^2-bc-ac+ab\right)\right]\)

\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)

\(=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)\)

\(\Rightarrow BT=\left(a-b\right)^2\left(a+b+c\right)+c\left(b-c\right)\left(a-c\right)-c\left(b-c\right)\left(a-c\right)\)

\(=\left(a+b\right)^2\left(a+b+c\right)\)

1 tháng 10 2017

a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

14 tháng 8 2019

a)ta co:  125x^3+y^6=(5x)^3+(y^2)^3=(5x+y^2)(5x-5xy^2+y^2)                                                                                                                           b)ta co 5xy^2-10xyz+5xz^2=5x(y^2-2yz+z^2)=5x(y-z)^2                                                                                                                                                               (may cau sau gan giong ban tu lam nha)

15 tháng 8 2019

b) \(5xy^2-10xyz+5xz^2\)

\(=5xy^2-5xyz-5xyz+5xz^2\)

\(=5xy\left(y-z\right)-5xz\left(y-z\right)\)

\(=\left(y-z\right)\left(5xy-5xz\right)\)

\(=5x\left(y-z\right)\left(y-z\right)\)

\(=5x\left(y-z\right)^2\)

5 tháng 11 2016

a/ x3 + xz + y2 z - xyz + y3 

= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)

= (x2 - xy + y2)(x + y + z)

5 tháng 11 2016

Nhiều vậy. Xíu m làm