phân tích đa thức thành nhân tử

a, 9 -x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

a, \(9-x^2+2xy-y^2\)

\(=9-\left(x-y\right)^2\)

\(=\left(3-x+y\right)\left(3+x-y\right)\)

b, \(x^4-x^2+4x-4\)

\(=x^4-\left(x-2\right)^2\)

\(=\left(x^2-x+2\right)\left(x^2+x-2\right)\)

\(=\left(x^2-x+2\right)\left(x^2+2x-x-2\right)\)

\(=\left(x^2-x+2\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2-x+2\right)\)

c, \(x^3-2x^2y+xy^2\)

\(=x^3-x^2y-x^2y+xy^2\)

\(=x^2\left(x-y\right)-xy\left(x-y\right)\)

\(=\left(x^2-xy\right)\left(x-y\right)\)

\(=x\left(x-y\right)^2\)

d, \(1-x^2-2xz-z^2\)

\(=1-\left(x+z\right)^2\)

\(=\left(1-x-z\right)\left(1+x+z\right)\)

A)

\(9-x^2+2xy-y^2=3^2-\left(x-y\right)^2\\ =\left(x-y+3\right)\left(3-x+y\right)\)

B)

\(x^4-x^2+4x-4=\left(x^2\right)^2-\left(x-2\right)^2\\ =\left(x^2+x-2\right)\left(x^2-x+2\right)\\ =\left(x^2-x+2x-2\right)\left(x^2+x-2x-2\right)\\ =\left(x-1\right)\left(x+2\right)\left(x+1\right)\left(x-2\right)\)

C)

\(x^3-2x^2y+xy^2\\ =x\left(x^2-2xy+y^2\right)\\ =x\left(x-y\right)^2\)

D)

\(1-x^2-2xz-z^2\\ =1^2-\left(x+z\right)^2\\ =\left(1+x+z\right)\left(1-x-z\right)\)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

13 tháng 8 2016

a) x2+ 4x+4-y2

=(x2+2.x.2+22)-y2

=(x+2)2-y2

=(x+2+y)(x+2-y)

b)(x2-2xy+y2)-z2

=(x-y)2-z2

=(x-y-z)(x-y+z)

29 tháng 9 2018

\(x^2+4x+4-y^2\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

hk tốt

^^

25 tháng 10 2016

1.x2-9

= (x-3)(x+3)

2. -2x2+2x+12

= -2x2+6x-4x+12

= -2x(x+2)+6(x+2)

= (x+2)(-2x+6)

4. -2x2+2x+24

= -2x2+8x-6x+24

= -2x(x+3)+8(x+3)

= (x+3)(-2x+8)

6. x2-5x+4

= x2-4x-x+4

= x(x-1) -4(x-1)

= (x-1)(x-4)

8. x2-7x+6

= x2-6x-x+6

= x(x-1)-6(x-1)

= (x-1)(x-6)

9. x2+5x+4

= x2+4x+x+4

= x(x+1)+4(x+1)

=(x+1)(x+4)

10. x2+7x+6

= x2 +x+6x+6

= x(x+1)+6(x+1)

= (x+6)(x+1)

K nhé

25 tháng 10 2016

Cảm ơn nhìu

a)\(\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)

b)\(x\left(y+1\right)+\left(y+1\right)=\left(y+1\right)\left(x+1\right)\)

c)\(\left(x+y\right)^2-2\left(x+y\right)=\left(x+y\right)\left(x+y-2\right)\)

17 tháng 9 2015

b) xy+1+x+y = x(y+1)+1+y = (x+1).(y+1)

15 tháng 12 2016

giúp mk vskhocroi

20 tháng 12 2016

bài 1: ... phá hết ra

bài 2

câu a, tách -2x^2 thành -x^2-x^2 rồi tự giải quyết

câu b, thêm bớt 1 để tạo hằng đẳng thức

câu c, đổi z-x thành -x-z

câu d là hằng đẳng thức đó má nội

mình rất muốn làm hết nhưng cái tật lười nó ko cho mình làm, mong bạn thông cảm

18 tháng 8 2018

Bài 8:

b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3

= (1+2x2y)(1-2x2y+4x4y2)

e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)

= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))

18 tháng 8 2018

Bài 9:

c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3

= (1-3x)3

d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)

= (x+\(\dfrac{1}{2}\))3

f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)

= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)

a) 3x2 - 7x + 2

= 3x2 - 6x - x + 2

= (3x2 - 6x) - (x - 2)

= 3x (x - 2) - (x - 2)

= (3x - 1) (x - 2)

27 tháng 10 2017

a) \(=2xy^2\left(x^2+8x+15\right)\)

\(=2xy^2\left[\left(x^2+8x+16\right)-1\right]\)

\(=2xy^2\left[\left(x+4\right)^2-1\right]\)

\(=2xy^2\left(x+4+1\right)\left(x+4-1\right)\)

\(=2xy^2\left(x+5\right)\left(x-3\right)\)

mấy câu sau tự làm nha :*

29 tháng 10 2017

b,=(x^2-10x+25)-4

  =(x-5)^2-2^2

  =(x-5-2)(x-5+2)

  =(x-7)(x-3)