\(3x-3y+6xy+6y^2\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

a) \(3x-3y+6xy+6y^2=3\left(x-y+2xy+2y^2\right)\)

b) \(4x^2-8xy-4z^2+4y^2=4\left(x^2-2xy+y^2-z^2\right)=4\left(\left(x-y\right)^2-z^2\right)=4\left(x-y-z\right)\left(x-y+z\right)\)

c) \(125a^3-8=\left(5a-2\right)\left(25a^2+10a+4\right)\)

d) \(x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

e) \(a^2b+ab^2+a^3+b^3=ab\left(a+b\right)+\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2+b^2\right)\)

31 tháng 7 2018

a,\(3x-3y+6xy-6y^2=3x\left(1+2y\right)-3y\left(1+2y\right)=\left(3x-3y\right)\left(1+2y\right)\)

b,

31 tháng 7 2018

\(4x^2-8xy-4z^2+4y^2=\left(2x-2y\right)^2-\left(2z\right)^2=\left(2x-2y-2z^{ }\right)\left(2x-2y+2z\right)\)

c,\(125a^3-8=\left(5a^{ }\right)^3-2^3=\left(5a-2\right)\left(5a^2+10a+4\right)\)

d, \(x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

31 tháng 7 2018

\(a.3x-3y+6xy-6y^2=3\left(x-y\right)+6y\left(x-y\right)=3\left(x-y\right)\left(2y+1\right)\) \(b.4x^2-8xy-4z^2+4y^2=\left(2x-2y\right)^2-4z^2=\left(2x-2y-2z\right)\left(2x-2y+2z\right)=4\left(x-y-z\right)\left(x-y+z\right)\) \(c.125a^3-8=\left(5a-2\right)\left(25a^2+10a+4\right)\)

\(d.x^2-y^2-x-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\) \(e.a^2b+ab^2a^3+b^3=b\left(a^2+a^4b+b^2\right)\)

27 tháng 10 2021

helpppppp

11 tháng 12 2018

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

Tham khảo nhé~

22 tháng 8 2018

a,  a(x-y) + bx - by = a(x - y ) +b.(x-y) = (x-y)(a-b)

b, ac+bc + a + b = c.(a+b) +(a+b) = (a+b)(c+1)

c, \(5a^2-5ax-7a+7x=5a.\left(a-x\right)-7.\left(a-x\right)=\left(a-x\right)\left(5a-7\right)\)

d, \(7z^2-7yz-4z+4y=7z.\left(z-y\right)-4.\left(z-y\right)=\left(z-y\right)\left(7z-4\right)\)

e, \(x^3+3x^2+3x+9=x^2.\left(x+3\right)+3\left(x+3\right)=\left(x+3\right)\left(x^2+3\right)\)

g, \(pq-p^2-5\left(p-q\right)=p.\left(q-p\right)+5\left(q-p\right)=\left(q-p\right)\left(p+5\right)\)

1 tháng 11 2018

a,\(x^3-3x^2+3x-1-y^3=\left(x^3-1\right)-\left(3x^2-3x\right)-y^3\)

\(=\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)-y^3\)

\(=\left(x-1\right)\left(x^2-2x+1\right)-y^3\)

\(=\left(x-1\right)^3-y^3=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)

....

1 tháng 11 2018

\(8x^2+10x-3\)

\(=8x^2+12x-2x-3\)

\(=4x.\left(2x+3\right)-\left(2x+3\right)\)

\(=\left(4x-1\right).\left(2x+3\right)\)

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left(x-1\right)^2+\left(x-1\right).y+y^2\)

ps: lớp 7, ko chắc 

30 tháng 9 2018

      \(x^3+4x^2+4x+3\)

\(=x^3+3x^2+x^2+3x+x+3\)

\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+x+1\right)\)

      \(x^2-y^2+4y-4\)

\(=x^2-\left(y^2-4y+4\right)\)

\(=x^2-\left(y-2\right)^2\)

\(=\left(x-y+2\right)\left(x+y-2\right)\)

      \(x^4+x^3y-xy^3-y^4\)

\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)

\(=\left(x+y\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt.

Phân tích đa thức thành nhân tử:

a) Ta có: \(3x^2-8xy+5y^2\)

\(=3x^2-3xy-5xy+5y^2\)

\(=3x\left(x-y\right)-5y\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5y\right)\)

b) Ta có: \(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3-\left(x-y\right)^3\right]\)

\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)

\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)

c) Ta có: \(2x\left(x-3\right)-x+3\)

\(=2x\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(2x-1\right)\)

d) Ta có: \(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\cdot\left(x-2\right)^2\)

e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)

\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)

\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)

\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)

f) Ta có: \(x^2-2xy+y^2-x+y-6\)

\(=\left(x-y\right)^2-\left(x-y\right)-6\)

\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)

\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)

\(=\left(x-y-3\right)\left(x-y+2\right)\)

g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)

\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)

\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)