Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)=\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left[x^4-2x^3+x^2+2x^3-4x^2+2x+2x^2-4x+2\right]\)
\(=x^2\left[x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)\right]\)
\(=x^2\left(x^2-2x+1\right)\left(x^2+2x+2\right)\)
\(=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)
a ) \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
b ) \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a) \(x^2+5x+6\\ =x^2+5x+\frac{25}{4}-\frac{1}{4}\\ =\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\\ \)
b) \(x^2\left(1-x^2\right)-4+4x^2\\ =x^2\left(1-x^2\right)-4\left(1-x^2\right)\\ =\left(x^2-4\right)\left(1-x^2\right)\\ =\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1+x\right)\)
a/ \(x^2+5x+6\)
\(=x^2+5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}\)
\(=\left(x+3\right)\left(x+2\right)\)
b/ \(x^2\left(1-x^2\right)-4+4x^2\)
\(=x^2\left(1-x^2\right)-4\left(1-x^2\right)\)
\(=\left(x^2-4\right)\left(1-x^2\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(1-x\right)\left(1-x\right)\)
a)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b)
Đặt \(x^2+3x+1=t\), ta có:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2+3x-2x-6\)
\(=t\left(t+3\right)-2\left(t+3\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
a, \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)
\(=\left(x^2+3x+1,5\right)^2-2,5^2\)
\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)
\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
Diệu Linh_face
\(6x^2+x-2\)
\(=6x^2-3x+4x-2\)
\(=3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(3x+2\right)\)
thak nha