K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(4x^4+12x^3+5x^2-6x-15\)

\(=\left(4x^4-4x^3\right)+\left(16x^3-16x^2\right)+\left(21x^2-21x\right)+\left(15x-15\right)\)

\(=4x^3\left(x-1\right)+16x^2\left(x-1\right)+21x\left(x-1\right)+15\left(x-1\right)\)

\(=\left(x-1\right)\left(4x^3+16x^2+21x+15\right)\)

\(=\left(x-1\right)\left[\left(4x^3+10x^2\right)+\left(6x^2+15x\right)+\left(6x+15\right)\right]\)

\(=\left(x-1\right)\left(2x+5\right)\left(2x^2+3x+3\right)\)

8 tháng 8 2017

cảm ơn bạn nhìu nha

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

22 tháng 6 2018

a, =x2(x-3)-4(x-3)=(x2-4)(x-3)=(x-2)(x+2)(x-3)

b, =x3(x+1)+(x+1)=(x3+1)(x+1)

c, =x3(x-1)-(x-1)(x+1)=(x3-x-1)(x-1)

d, =(2x+1+x-1)(2x+1-x+1)=3x(x+2)

e, =x4+4x2+4-9=(x2+2)2-32=(x2+2+3)(x2+2-3)=(x2+5)(x2-1)

22 tháng 6 2018

a)  (x-3)(x-2)(x+2)

b)  (x+1)2(x2-x+1)

c)  (x-1)(x3+x+1)

d)  3x(x+2)

e)  (x2+5)(x+1)(x-1)

30 tháng 10 2016

\(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

\(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)

\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)

\(x^4-4x^3+8x^2-16x+16\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

\(3a^2-6ab+3b^2-12c^2\)

\(=3\left(a^2-2ab+b^2-4c^2\right)\)

\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)

\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)

30 tháng 10 2016

cảm ơn bạn nha!eoeo

28 tháng 9 2017

a) 25x2 - 20xy + 4y2

= (5x)2 - 2.5x.2y + (2y)2

= (5x - 2y)2

b) x2 - 6x + 8

= x2 - 6x + 9 - 1

= (x - 3)2 - 1

= (x - 3 - 1)(x - 3 + 1)

= (x - 4)(x - 2)

c) x2 - 5x - 14

= x2 + 2x - 7x - 14

= (x2 + 2x) - (7x + 14)

= x(x + 2) - 7(x + 2)

= (x - 7)(x+2)

d) x5 - x

= x(x4 - 1)

= x(x2 + 1)(x2 - 1)

= x(x2 + 1)(x - 1)(x + 1)

e) x3 - 3x2 - 4x + 12

= (x3 - 3x2) - (4x - 12)

= x2(x - 3) - 4(x - 3)

= (x2 - 4)(x - 3)

26 tháng 7 2017

a) bt \(=\left(x-8\right)\left(x^2-x-2\right)=\left(x-8\right)\left(x+1\right)\left(x-2\right)\)

kl: ...

b) \(=\left(x+2\right)\left(x^2-8x-15\right)=\left(x+2\right)\left(x-5\right)\left(x-3\right)\)

kl:....

26 tháng 7 2017

a, \(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=x^2\left(x-8\right)-x\left(x-8\right)-2\left(x-8\right)\)

\(=\left(x-8\right)\left(x^2-x-2\right)\)

\(=\left(x-8\right)\left(x^2-2x+x-2\right)\)

\(=\left(x-8\right)\left[x\left(x-2\right)+\left(x-2\right)\right]\)

\(=\left(x-8\right)\left(x-2\right)\left(x+1\right)\)

b, \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-6\right)\)

\(=\left(x-5\right)\left(x^2-3x+2x-6\right)\)

\(=\left(x-5\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]\)

\(=\left(x-5\right)\left(x-3\right)\left(x+2\right)\)

Chúc bạn học tốt!!!

7 tháng 8 2017

1,x(2x-7)-4x-14=x(2x-7)-2(2x-7)=(2x-7)(x-2)

1 tháng 11 2016

a) (x^2+x)^2-14(x^2+x)+24

=(x^2+x)^2-2(x^2+x)-12(x^2+x)24

=(x^2+x)(x^2+x-2)-12(x^2+x-2)

=(x^2+x-12)(x^2+x-2)

1 tháng 11 2016

b)x^2-y^2+4-4x

=(x^2-4x+4)-y^2

=(x-2)^2-y^2

=(x-2+y)(x-2-y)