\(^4\) + x\(^2\) + 1) -...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

a) \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

                      \(=\left(x+1\right)\left(x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)^2\left(x^2-2x+1\right)\)

b) \(x^4-x^3-x^2+1=x^3\left(x-1\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

                        = (x-1)(x3-x-1)

15 tháng 8 2018

a) \(x^4+x^3+x+1=x^3.\left(x+1\right)\)\(+\left(x+1\right)\)\(=\left(x+1\right).\left(x^3+1\right)\)

2 tháng 10 2018

dễ mak

2 tháng 10 2018

nếu dễ thì trả lời hộ đi

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

9 tháng 8 2020

1) = \(x^2-1=\left(x-1\right)\left(x+1\right)\)

2) \(=\left(x^2+8\right)^2-16x^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

3) 

\(=x^4-x+x^2+x+1=x\left(x^3-1\right)+x^2+x+1=x\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

4) \(=x^5-x^2+x^2+x+1=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

9 tháng 8 2020

1.\(x^2-2021+2020=x^2-1=\left(x+1\right)\left(x-1\right)\)

2. \(x^4+64=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

3. \(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2+x+1\right)\)

4. \(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

27 tháng 10 2021

helpppppp

19 tháng 1 2020

a) \(12x-9-4x^2\)

\(=-\left(4x^2-12x+9\right)\)

\(=-\left(2x-3\right)^2\)

b)\(1-9x+27x^2-27x^3\)

\(=\left(1-3x\right)^{^3}\)

c)\(\frac{x^2}{4}+2xy+4y^2-25\)

\(=\left(\frac{x}{2}+2y\right)^2-5^2\)

\(=\left(\frac{x}{2}+2y-5\right)\left(\frac{x}{2}+2y+5\right)\)

d)\(\left(x^2-4x\right)^2-8\left(x^2-4x\right)+15\)

\(=\left(x^2-4x\right)^2-3\left(x^2-4x\right)-5\left(x^2-4x\right)+15\)

\(=\left(x^2-4x\right)\left(x^2-4x-3\right)-5\left(x^2-4x-3\right)\)

\(=\left(x^2-4x-5\right)\left(x^2-4x-3\right)\)

\(=\left(x^2+x-5x-5\right)\left(x^2-4x-3\right)\)

\(=\left[x\left(x+1\right)-5\left(x+1\right)\right]\left(x^2-4x-3\right)\)

\(=\left(x-5\right)\left(x+1\right)\left(x^2-4x-3\right)\)

Chúc bạn học tốt !

23 tháng 1 2019

Biết câu nào làm câu đấy thoy nha :))

3. \(x^4y^4+4\)

\(=\left(x^2y^2\right)^2+2\cdot x^2y^2\cdot2+2^2-2\cdot x^2y^2\cdot2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)

4. \(x^4+4y^4\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot2y^2+\left(2y^2\right)^2-2\cdot x^2\cdot2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

23 tháng 1 2019

2. \(x^4+x^2+1\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot1+1^2-2x^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)