Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
x3 + x2 + 4
= x3 + 2x2 - x2 - 2x + 2x + 4
= x2(x + 2) - x(x + 2) + 2(x + 2)
= (x + 2)(x2 - x + 2)
2x3 - 3x2 + 3x - 1
= 2x3 - x2 - 2x2 + x + 2x - 1
= 2x2(x - 1/2) - 2x(x - 1/2) + 2(x - 1/2)
= (x - 1/2)(2x2 - 2x + 2)
= 2(x - 1/2)(x2 - x + 1)
3x3 - 14x2 + 4x + 3
= 3x3 + x2 - 15x2 - 5x + 9x + 3
= 3x2(x + 1/3) - 15x(x + 1/3) + 9(x + 1/3)
= (x + 1/3)(3x2 - 15x + 9)
= 3(x + 1/3)(x2 - 5x + 3)
1.xy(14x-21y+28xy)
2. a)\(x^2-4\ne0\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b)\(\frac{x^2-2x-2x+4}{x^2-4}=\frac{x\left(x-2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\) với đk (a)=> \(b=\frac{x-2}{x+2}=1-\frac{4}{x+2}\)
c) \(C=\frac{-3-2}{-3+2}=-\frac{5}{-1}=5\)
1. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
2.a)Để phân thức được xác định thì \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow\orbr{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(\frac{x^2-4x+4}{x^2-4}=\frac{x^2-2.x.2+2^2}{x^2-2^2}\)
\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
c)Thay x=-3 ta có:
\(\frac{-3-2}{-3+2}=\frac{-5}{-1}=5\)
a) 3x - 3y
= 3 ( x- y )
b) 2x^2 + 5x^3 + x^2y
= x^2 ( 2+ 5x + y)
c) 14x^2 --21xy^2 + 28x^2y^2
= 7x ( 2x - 3y^2 + 4xy^2)
d) 4x^3 - 14x^2
= x^2 ( 4x - 14 )
e) 5y^10 + 15y^6
= 5y^6 (y^4 + 3 )
f) 9x^2y^2 + 15x^2y -21xy
= 3xy( 3xy + 5x - 7)
g) x( y-1 ) - y ((y-1)
=(y -1) (x-y)
\(A=3x^2-14x^2+4x+3\)
Giả sử:
\(A=\left(3x+a\right)\left(x^2+bx+c\right)\)
\(=3x^3+3bx^2+3cx+ax^{2\:}+abx+ac\)
\(=3x^3+\left(3b+a\right)x^2+\left(3c+ab\right)x+ac\)
Ta có:
\(\begin{cases}3b+a=-14\\3c+ab=4\\ac=3\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=-5\\c=3\end{cases}\)
Vậy \(A=\left(3x+1\right)\left(x^2-5x+3\right)\)