Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(=\left(2y\right)^2-\left(x^2-2x+1\right)=\left(2y\right)^2-\left(x-1\right)^2=\left(2y-x+1\right)\left(2y+x-1\right)\)
2, \(=2\left(x^2-y^2\right)+8\left(x+1\right)=2\left(x+1\right)\left(x-1\right)+8\left(x+1\right)=2\left(x+1\right)\left(x-1+4\right)=2\left(x+1\right)\left(x+3\right)\)
3, \(=\left(x^2+6x+9\right)-\left(2y\right)^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)
4, \(=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)
\(4y^2-x^2+2x-1\)
\(=4y^2-\left(x^2-2x+1\right)\)
\(=\left(2y\right)^2-\left(x-1\right)^2\)
\(=\left(2y-x+1\right)\left(2y+x-1\right)\)
hk tốt
^^
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)
\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(x^4+x^3+2x-4\)
\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)
\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)
\(8x^4-2x^3-3x^2-2x-1\)
\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)
\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
\(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
Chúc bạn học tốt.
a, x(a - b) + (a - b)
= (x + 1)(a - b)
b, x(a + b) - a - b
= x(a + b) - (a + b)
= (x - 1)(a + b)
c, 10ax - 5ay - 2x + y
= 5a(2x - y) - (2x - y)
= (5a - 1)(2x - y)
d, 2a^2x - 5by - 5a^2y + 2bx
= 2x(a^2 + b) - 5y(b + a^2)
= (2a - 5y)(a^2 + b)
làm tiếp:
2ax2 - bx2 - 2ax +bx +4a-2b
= x2(2a-b) - x(2a-b) +2(2a-b)
=(2a-b)(x2-x+2)
a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(4x^8+1=4x^8+4x^4+1-4x^4=\left(2x^4+1\right)^2-4x^4=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)
d) \(x^2+14x+48=\left(x+7\right)^2-1=\left(x+7+1\right)\left(x+7-1\right)=\left(x+8\right)\left(x+6\right)\)
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+1\right)\left(x+1\right)^2\)
\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)
\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+x+1\right)\)
\(x^3-4x^2+12x-27\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)
\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)
\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)
\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)
\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)
Phân tích đa thức thành nhân tử:
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(a^6-a^4+2a^3+2a^2\)
a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)
\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)
\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)
\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)
\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)
\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)
\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)
\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)
b) \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)
\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)
2ax- 2ay+ 2a= 2a( x - y + 1 )
x44+8x = x ( x\(^3\) + 8 ) = x ( x + 2 ) ( x\(^2\) - 2x + 4 )
x22 -9 = ( x - 3 ) ( x + 3 )
2xm33-2x = 2x ( m\(^3\) - 1 ) = 2x ( m - 1 ) ( m\(^2\) + m + 1)