\(x^4y^4+4\)

2. \...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

1.

x4y4+4=[(x2y2)2+2.x2y2.2+22]-4x2y2

=(x2y2+2)2-(2xy)2

bạn tính nốt đi, câu 2, 4, 6 tương tự

câu 4 khá dài bạn lấy số đấy chia cho (x+1) ra nháp rồi tính ngược lại sẽ ra

10 tháng 10 2022

1: \(=x^4y^4+4+4x^2y^2-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-4x^2y^2\)

\(=\left(x^2y^2+2xy+2\right)\left(x^2y^2-2xy+2\right)\)

2: \(=x^4y^4+16x^2y^2+64-16x^2y^2\)

\(=\left(x^2y^2+8\right)^2-16x^2y^2\)

\(=\left(x^2y^2+8-4xy\right)\left(x^2y^2+8+4xy\right)\)

3: \(=x^4+4x^2+4-x^2\)

\(=\left(x^2+2\right)^2-x^2\)

\(=\left(x^2+x+2\right)\left(x^2-x+2\right)\)

4: \(=4x^4y^4+1+4x^2y^2-4x^2y^2\)

\(=\left(2x^2y^2+1\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2y^2+1-2xy\right)\left(2x^2y^2+1+2xy\right)\)

6: \(=x^4+4y^4+4x^2y^2-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2+2xy\right)\left(x^2+2y^2-2xy\right)\) 

23 tháng 1 2019

Biết câu nào làm câu đấy thoy nha :))

3. \(x^4y^4+4\)

\(=\left(x^2y^2\right)^2+2\cdot x^2y^2\cdot2+2^2-2\cdot x^2y^2\cdot2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)

4. \(x^4+4y^4\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot2y^2+\left(2y^2\right)^2-2\cdot x^2\cdot2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

23 tháng 1 2019

2. \(x^4+x^2+1\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot1+1^2-2x^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)

4 tháng 8 2017

a )\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)

b )\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+2x+2\right)\left(x^2-2\right)\)

c ) \(x^2\left(1-x^2\right)-4-4x^2=x^2-x^4-4-4x^2\)

\(=x^2-\left(x^2+2\right)^2=\left(x-x^2-2\right)\left(x^2+x+2\right)\)

4 tháng 8 2017

a.x2-2x-4y2-4y=(x2-4y2)-(2x+4y)=(x-2y)(x+2y)-2(x+2y)=(x+2y)(x-2y-2)

b.x4+2x3-4x-4=(x4-4)+(2x3-4x)=(x2-2)(x2+2)+2x(x2-2)=(x2-2)(x2+2x+2)

c.x2(1-x2)-4-4x2= -x4-3x2-4=x2-(x4+4x2+4)=x2-(x2+2)2=(x-x2-2)(x+x2+2)

30 tháng 9 2020

1. x2 - 16 - 4xy + 4y2

= ( x2 - 4xy + 4y2 ) - 16

= ( x - 2y )2 - 42

= ( x - 2y - 4 )( x - 2y + 4 )

2. 4x2 + 4x - 3

= ( 4x2 + 4x + 1 ) - 4

= ( 2x + 1 )2 - 2

= ( 2x + 1 - 2 )( 2x + 1 + 2 )

= ( 2x - 1 )( 2x + 3 )

3. x2 - x - 12

= x2 + 3x - 4x - 12

= x( x + 3 ) - 4( x + 3 )

= ( x + 3 )( x - 4 )

4. 3x + 3y - x2 - 2xy - y2

= ( 3x + 3y ) - ( x2 + 2xy + y2 )

= 3( x + y ) - ( x + y )2

= ( x + y )( 3 - x - y )

5. 4y4 + 16 

= 4( y4 + 4 )

= 4( y4 + 4y2 + 4 - 4y2 )

= 4[ ( y4 + 4y2 + 4 ) - 4y2 ]

= 4[ ( y2 + 2 )2 - ( 2y )2 ]

= 4( y2 - 2y + 2 )( y2 + 2y + 2 )

30 tháng 9 2020

a,\(x^2-16-4xy+4y^2\)

\(=\left(x^2-4xy+4y^2\right)-16\)

\(=\left(x-2y\right)^2-4^2\)

\(=\left(x-2y-4\right)\left(x-2y+4\right)\)

b,\(4x^2+4x-3\)

\(=4x^2-2x+6x-3\)

\(=\left(4x^2-2x\right)+\left(6x-3\right)\)

\(=2x\left(2x-1\right)+3\left(2x-1\right)\)

\(=\left(2x+3\right)\left(2x-1\right)\)

c,\(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=\left(x^2+3x\right)-\left(4x-12\right)\)

\(=x\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

26 tháng 9 2019

a) \(3x^2-9x+30=3\left(x^2-3x+10\right)\)

b) \(3x^2-5x-2=3x^2-6x+x-2\)

\(=3x\left(x-2\right)+\left(x-2\right)=\left(3x+1\right)\left(x-2\right)\)

c) \(x^4+4y^4\)

\(=x^4+4y^4+2x^2y^2+2x^2y^2-4x^2y^2+4xy^3-4xy^3+2x^3y-2x^3y\)

\(=\left(4y^4-4xy^3+2x^2y^2\right)+\left(4xy^3-4x^2y^2+2x^3y\right)\)

\(+\left(2x^2y^2-2x^3y+x^4\right)\)

\(=2y^2\left(2y^2-2xy+x^2\right)+2xy\left(2y^2-2xy+x^2\right)\)

\(+x^2\left(2y^2-2xy+x^2\right)\)

\(=\left(2y^2+2xy+x^2\right)\left(2y^2-2xy+x^2\right)\)

d) \(x^5+x+1\)

\(=x^5+x+1+x^4-x^4+x^3-x^3+x^2-x^2\)

\(=\left(x^5-x^4+x^2\right)+\left(x^4-x^3+x\right)+\left(x^3-x^2+1\right)\)

\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

26 tháng 9 2019

đang cần gấp

21 tháng 10 2019

a) -3x^2+x+4

=-3x^2-3x+4x+4

=-3x.(x+1)+4.(x+1)

=(x+1).(4-3x)

21 tháng 10 2019

b) \(x^3-3x^2+2\)

\(=x^3-2x^2-x^2+2\)

\(=x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\)

\(=\left(x^2-x-2\right)\left(x-2\right)\)

c) \(x^4y^4+64\)

\(=x^4y^4+16x^2+64-16x^2\)

\(=\left(x^2y^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2y^2-4x+8\right)\left(x^2y^2+4x+8\right)\)

d) \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+1\)

\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left[x^6-x^4-x+x^3-1\right]\)

\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x+x+2\right)\left(x^2+x-x-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2-4y+1\right)\)

\(=\left(x-1\right)^2-\left(2y-1\right)^2=\left(x-1+2y-1\right)\left(x-1-2y+1\right)\)

\(=\left(x-2y\right)\left(x+2y-2\right)\)

30 tháng 10 2019

1) \(x^2-2x-4y^2-4y\)

\(=x^2-2x-4y^2-4y+2xy-2xy\)

\(=\left(-4y^2+2xy-4y\right)-\left(2xy-x^2+2x\right)\)

\(=2y\left(-2y+x-2\right)+x\left(-2y+x-2\right)\)

\(=\left(2y+x\right)\left(-2y+x-2\right)\)

30 tháng 10 2019

3) \(x^2-3x+2\)

\(=x^2-2x-x+2\)

\(=x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

21 tháng 7 2018

\(x^2-4y^2+4y-1=x^2-\left(2y-1\right)^2=\left(x+2y-1\right)\left(x-2y+1\right)\)

21 tháng 7 2018

\(x^4+3x^3-9x-9\)

\(=x^4-9+3x^3-9x\)

\(=\left(x^2-3\right)\left(x^2+3\right)+3x\left(x^2-3\right)\)

\(=\left(x^2-3\right)\left(x^2+3+3x\right)\)

30 tháng 9 2018

      \(x^3+4x^2+4x+3\)

\(=x^3+3x^2+x^2+3x+x+3\)

\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+x+1\right)\)

      \(x^2-y^2+4y-4\)

\(=x^2-\left(y^2-4y+4\right)\)

\(=x^2-\left(y-2\right)^2\)

\(=\left(x-y+2\right)\left(x+y-2\right)\)

      \(x^4+x^3y-xy^3-y^4\)

\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)

\(=\left(x+y\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

Chúc bạn học tốt.