K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2020

Bài 1:

a) \(x.\left(x^2-2xy+1\right)=x^3-2x^2y+x\)

b) \(\left(2x-3\right).\left(x+2\right)=2x^2+4x-3x-6=2x^2-x-6\)

Bài 2:

a) \(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)

b) \(x^2-xy+2x-2y=\left(x^2-xy\right)+\left(2x-2y\right)=x.\left(x-y\right)+2.\left(x-y\right)=\left(x-y\right).\left(x+2\right)\)

c) Đề sai.

4 tháng 8 2015

h) (x+1)(x+4)(x+2)(x+3) - 24

= (x2+4x+x+4)(x2+3x+2x+6)-24

=(x2+5x+5-1)(x2+5x+5+1)-24

=(x2+5x+5)-12 -24

=(x2+5x+5)-25

=(x2+5x+5)-52

=(x2+5x+5-5)(x2+5x+5+5)

=(x2+5x)(x2+5x+10)

 

i) 4(x2+5x+10x+50)(x2+6x+12x+72)-3x2

=4[x(x+5)+10(x+5)].[x(x+6)+12(x+6)]- 3x2

=4(x+10)(x+5)(x+12)(x+6)-3x2

=4(x+10)(x+6)(x+12)(x+5)-3x2

=4(x2+6x+10x+60)(x2+5x+12x+60)-3x2

=4(x2+16x+60)(x2+17x+60)-3x2

Đặt (x2+16x+60) = a

Ta có: 4a(a+x)-3x2

=4a2+4ax -3x2

=(2a)2 + 2.2a.x +x2 -4x2

= [ (2a) +x]2 - (2x)2
= [ (2a) +x -2x].[(2a) + x +2x)]

=[ (2a) -x].[(2a) + 3x)]
sau đó ta thế a = (x2+16x+60) rồi rút gọn là xong ^^

3 tháng 8 2015

Đã khó lại còn dài 

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

5 tháng 9 2017

dễ mà tự suy nghĩ và dùng máy tính bấm là ra thôi

23 tháng 3 2020

Bài2: phân tích đa thức thành nhân tử 

\(a,x^2-y^2-2x+2y\)

\(=\left(x-y\right)\left(y+x-2\right)\)

\(b,x^3-5x^2+x-5\)

\(=x^2\left(x-5\right)+\left(x-5\right)\)

\(=\left(x+x-5\right)\left(x-x-5\right)\)

  \(c,x^2-2xy+y^2-9\)

\(=\left(x^2-y^2\right)-3^2\)

\(=\left(x-y+3\right)\left(x-y-3\right)\)

chúc bạn học tốt !

24 tháng 3 2020

a) A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 6x^2 + 33x - 10x - 55 - 6x^2 - 23x - 21

A = -76

b) B = 4x(3x - 2) - 3x(4x + 1)

B = 12x^2 - 8x - 12x^2 - 3x

B = -11x

c) C = (x + 3)(x - 2) - (x - 1)^2

C = x^2 + x - 6 - x^2 + 2x - 1

C = 3x - 7

3 tháng 7 2016

a) =x3-2x2+x2-2x+x-2

=x2(x-2)+x(x-2)+(x-2)

=(x-2)(x2+x+1)

3 tháng 7 2016

\(a.=x^3-2x^2+x^2-2x+x-2=x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+x+2\right)\)

b.\(=2x^3+x^2-2x^2-x-2x-1=x^2\left(2x+1\right)-x\left(2x-1\right)-\left(2x-1\right)\)\(=\left(2x-1\right)\left(x^2-x-1\right)\)

c.\(3x^3-x^2+6x^2-2x-12x+4=x^2\left(3x-1\right)+2x\left(3x-1\right)-4\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2+2x-4\right)\)

d.\(3x^3-x^2-6x^2+2x+15x-5=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)\(=\left(3x-1\right)\left(x^2-2x+5\right)\) 

t i c k cho mình nha

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

29 tháng 7 2016

Bài 1: 4a2-4ab+b2-9a2b2

=(2a)2-2.2a.b+b2-(3ab)2

=(2a-b)2-(3ab)2

=(2a-b-3ab)(2a-b+3ab)

29 tháng 7 2016

a/ (4a2-4ab+b2)-9a2b2

= (2a-b)2-(3ab)2

= (2a-b-3ab) (2a-b+3ab)