Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0 có gợi ý thì khó chứ có hd thế này thì quá rõ ràng rồi.
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)=\left(1+x^2\right)^2-4x\left(1-x^2\right)+4x^2-4x^2=\left(1-x^2-2x\right)^2-4x^2=\left(1-x^2-2x+2x\right)\left(1-x^2-2x-2x\right)=\left(1-x^2\right)\left(1-x^2-4x\right)=\left(1-x\right)\left(1+x\right)\left(1-x^2-4x\right)\)
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
\(\Leftrightarrow\left(1+x^2\right)^2+4x\left(1+x^2\right)\)
\(\Leftrightarrow\left(1+x^2\right)\times\left[\left(1+x^2\right)+4\right]\)
( 1+x2 )2 -4x( 1- x2 )
=x4+2x2+1-4x+4x3
=x3+2x2-x+2x3+4x2-2x-x2-2x+1
=x(x2+2x-1)+2x(x2+2x-1)-(x2+2x-1)
=(x2+2x-1)(x2+2x-1)
=(x2+2x-1)2
\(\left(1+x\right)^2-4x\left(1-x^2\right)\)
\(=\left(1+x\right)^2-4x\left(1-x\right)\left(1+x\right)\)
\(=\left(1+x\right)\left(1+x-4\left(1-x\right)\right)\)
\(=\left(1+x\right)\left(1+x-4+4x\right)\)
\(=\left(1+x\right)\left(5x-3\right)\)
a) 3x2 - 7x + 2
= 3x2 - 6x - x + 2
= (3x2 - 6x) - (x - 2)
= 3x (x - 2) - (x - 2)
= (3x - 1) (x - 2)
a) x3 + 2x - 3
=x3+x2+3x-x2+x+3
=x(x2+x+3)-1(x2+x+3)
=(x-1)(x2+x+3)
b) x3 - x2 + x + 3
=x3-2x2+3x+x2-2x+3
=x(x2-2x+3)+1(x2-2x+3)
=(x+1)(x2-2x+3)
c) 3x3 - 4x2 + 13x - 4
=3x3-3x2+12-x2-x+4
=3x(x2-x+4)-1(x2-x+4)
=(3x-1)(x2-x+4)
d) 6x3 + x2 + x + 1
=6x3-2x2+2x+3x2-x+1
=2x(3x2-x+1)+1(3x2-x+1)
=(2x+1)(3x2-x+1)
e)bạn phân tích tương tự nhé mk cho đáp án để bạn đổi chiếu nè
=(2x+1)(2x2+2x+1)
d) x3-4x2-9x+36
=x2(x-4)-9(x-4)
=(x-4)(x2-9)
=(x-4)(x+3)(x-3)
e)(x+1)3+(2x-1)3
=x3+3x2+3x+1+8x3-12x2+6x-1
=9x3-9x2+9x
=9x(x2-x+1)
g)x3+3x2-4x-12
=x2(x+3)-4(x+3)
=(x+3)(x2-4)
=(x+3)(x+2)(x-2)
h) x3-4x2+4x-1
=x3-1-4x2+4x
=(x-1)(x2+x+1)-4x(x-1)
=(x-1)(x2+x+1-4x)
=(x-1)(x2-3x+1)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) Đặt t = x2
bthuc <=> t2 - 7t + 16
Từ đây ta không thể phân tích được :)
b) x3 - 2x2 + 5x - 4
= x3 - x2 - x2 + x + 4x - 4
= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - x + 4 )
c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )
d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )
e) 6x3 + x2 + x + 1
= 6x3 + 3x2 - 2x2 - x + 2x + 1
= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 3x2 - x + 1 )
f) 4x3 + 6x2 + 4x + 1
= 4x3 + 2x2 + 4x2 + 2x + 2x + 1
= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 2x2 + 2x + 1 )