Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) 25x2 - 10xy + y2 = (5x - y)2
b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)
c) 8x3 + 36x2y + 54xy2 + 27y3
= 8x3 + 27y3 + 36x2y + 54xy2
= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)
= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)
= (2x + 3y)(4x2 + 12xy + 9y2)
= (2x + 3y)(2x + 3y)2 = (2x + 3y)3
c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2
= (a2 + b2 - 5)2 - (2ab + 4)2
= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)
= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)
= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)
= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)
pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm
Bài 2:
a) 2x3 + 3x2 + 2x + 3
= 2x3 + 2x + 3x2 + 3
= 2x(x2 + 1) + 3(x2 + 1)
= (x2 + 1)(2x + 3)
b)x3z + x2yz - x2z2 - xyz2
= xz(x2 + xy - xz - yz)
= \(xz\left [ x(x + y) - z(x + y) \right ]\)
= xz(x + y)(x - z)
c) x2y + xy2 - x - y
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
d) 8xy3 - 5xyz - 24y2 + 15z
= 8xy3 - 24y2 - 5xyz + 15z
= 8y2(xy - 3) - 5z(xy - 3)
= (xy - 3)(8y2 - 5z)
e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3
= x3 - y3 + y - 3x2y + 3xy2 - x
= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)
= (x - y)(x2 + xy + y2 - 3xy - 1)
= (x - y)(x2 - 2xy + y2 - 1)
= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)
= (x - y)(x - y - 1)(x - y + 1)
câu f tương tự
a)27x3+27x2+9x+1+x+1/3
=(3x+1)3+1/3(3x+1)
=(3x+1)[(3x+1)2+1/3]
=(3x+1)(9x2+6x+4/3)
b)8xy3-5xyz-24y2+15z
=(8xy3-24y2)-(5xyz-15z)
=8y2(xy-3)-5z(xy-3)
=(xy-3)(8y2-5z)
c)x4+x3+x+1
=x3(x+1)+(x+1)
=(x+1)(x3+1)
=(x+1)(x+1)(x2-x+1)
=(x+1)2(x2-x+1)
d)a6-a4-2a3+2a2
=a4(a-1)(a+1)-2a2(a-1)
=(a-1)(a5+a4-2a2)
=(a-1)(a5-a4+2a4-2a2)
=(a-1)[a4(a-1)+2a2(a-1)(a+1)]
=(a-1)(a-1)(a4+2a3+2a2)
=(a-1)2(a4+2a3+2a2)
\(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
1) x3 + y3 + z3 - 3xyz
= ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
= [ ( x + y )3 + z3 ) - [ 3xy( x + y ) + 3xyz ]
= ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy( x + y + z )
= ( x + y + z )( x2 + y2 + z2 + 2xy - xz - yz - 3xy )
= ( x + y + z )( x2 + y2 + z2 - xy - yz - xz )
2) Tạm thời đang bí chưa làm được :(
3) ( x2 - 2x )2( x2 - 2x - 1 ) - 6 ( đề có vấn đề -- )
4) x4 - 7x3 + 14x2 - 7x + 1
= x4 - 3x2 - 4x2 + x2 + 12x2 + x2 - 4x - 3x + 1
= ( x4 - 3x2 + x2 ) - ( 4x3 - 12x2 + 4x ) + ( x2 - 3x + 1 )
= x2( x2 - 3x + 1 ) - 4x( x2 - 3x + 1 ) + ( x2 - 3x + 1 )
= ( x2 - 3x + 1 )( x2 - 4x + 1 )
a) Ta có : a2x + a2y - 7x - 7y
= a2(x + y) - (7x + 7y)
= a2(x + y) - 7(x + y)
= (x + y)(a2 - 7)
b) Ta có : x3 + y(1 - 3x2) + x(3x2 - 1) - y3
= x3 - y(3x2 - 1) + x(3x2 - 1) - y3
= x3 - y3 + [x(3x2 - 1) - y(3x2 - 1)]
= x3 - y3 - (3x2 - 1)(x - y)
= (x - y)(x2 + xy + y2) - (3x2 - 1)(x - y)
= (x - y)[(x2 + xy + y2) - (3x2 - 1)]
= (x - y)(x2 + xy + y2 - 3x2 + 1)
= (x - y)(-2x2 + xy + y2 + 1)
bài 2:a. \(5x.\left(y^2-2yz+z^2\right)\)
\(=5x.\left(y-z\right)^2\) .......k bít dc chưa
b.\(\left(x^2y-x\right)+\left(xy^2-y\right)\)
\(=x.\left(xy-1\right)+y.\left(xy-1\right)\)
\(=\left(xy-1\right).\left(x+y\right)\)
\(1.=5xy\left(x-2y\right)\)
\(2.=\left(5-y\right)\left(x-y\right)\)
\(3.=y\left(x-z\right)-7\left(x-z\right)=\left(y-7\right)\left(x-z\right)\)
\(5.=2x\left(3y-7z\right)-6y\left(3y-7z\right)=\left(2x-6y\right)\left(3y-7x\right)\)
\(4.=27x^2\left(y-1\right)+9x^3\left(y-1\right)=9x^2\left(3+x\right)\left(y-1\right)\)
1) Ta có: 2xy - x2 - y2 + 16
= -(x2 - 2xy + y2 - 16)
= -[(x - y)2 - 16]
= -(x - y - 4)(x - y + 4)
2) x3 + 2x2y + xy2 - 9x
= x(x2 + 2xy + y2 - 9)
= x[(x + y)2 - 9]
= x(x + y - 3)(x + y + 3)
3) x4 - 2x2 = x2(x2 - 2)
1. 2xy-x2-y2+16= -(x2-2xy+y2-16) = -(x2-2xy+y2)-16 = -(x-y)2-16= (x+y)2-42= (x+y-4).(x+y+4)
2. x3+2x2y+xy2-9x= (có sai đề không vậy?)
a.
\(x^4-x^3-x+1=x^3\times\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)=\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)^2\left(x^2+x+1\right)\)
b.
\(8xy^3-5xyz-24y^2+15z=8y^2\times\left(xy-3\right)-5z\left(xy-3\right)=\left(xy-3\right)\left(8y^2-5z\right)\)
c.
\(x^2-y^2+2x+1=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\)
d.
\(x^2+2xz-y^2+2ty+z^2-t^2=\left(x+z\right)^2-\left(y-t\right)^2=\left(x+z+y-t\right)\left(x+z-y+t\right)\)
e.
\(2x^2-y^2+xy=2x^2+2xy-y^2-xy=2x\times\left(x+y\right)-y\times\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)
f.
\(y^2-y-12=y^2-3y+4y-12=y\times\left(y-3\right)+4\times\left(y-3\right)=\left(y-3\right)\left(y+4\right)\)
\(x^4-x^3-x+1\)
\(=x^3\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)^2\left(x^2+x+1\right)\)