Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn viết sai đề rồi. Mình sửa lại nhé.
\(x^3-5x^2+2x+8\)
\(=x^3-2x^2-3x^2+6x-4x+8\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x^2-3x-4\right)\left(x-2\right)\)
\(=\left[\left(x^2-4x\right)+\left(x-4\right)\right]\left(x-2\right)\)
\(=\left[x\left(x-4\right)+\left(x-4\right)\right]\left(x-2\right)\)
\(=\left(x+1\right)\left(x-4\right)\left(x-2\right)\)
Chúc bạn học tốt.
a) \(x^2-xy+4x-2y+4\)
\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\\ =\left(x+2\right)^2-y.\left(x+2\right)\)
\(=\left(x+2\right).\left(x+2-y\right)\)
b) \(2x^2-5x-3\)
\(=2x^2+x-6x-3\)
\(=\left(2x^2+x\right)-\left(6x+3\right)=x\left(2x+1\right)-3\left(2x+1\right)\)
\(=\left(2x+1\right).\left(x-3\right)\)
c)\(\)
c);d);e) tạm thời tớ chưa nghĩ ra-.-"
tham khả tạm 2 câu ạ, chúc học tốt'.'
2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3
= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3
= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]
= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )
= ( x - 1 )( x + 1 )
Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)
\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\)
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
1) \(x^3+x^2+4\)
\(=\left(x^3-x^2+2x\right)+\left(2x^2-2x+4\right)\)
\(=x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)
\(=\left(x^2-x+2\right)\left(x+2\right)\)
2) \(x^3-2x-4\)
\(=\left(x^3+2x^2+2x\right)-\left(2x^2+4x+4\right)\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x^2+2x+2\right)\left(x-2\right)\)
1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)
Vạy ...
phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\((4x-1)^2-(5-3x)^2=0\)
\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)
\(\Leftrightarrow(x-6)(x+6)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Vậy : ...
x2 + 1 - y2 - 2x = (x2 - 2x + 1) - y2 = (x - 1)2 - y2 = (x - 1 - y).(x - 1 + y)
45 + x3 - 5x2 - 9x
= (x3 - 5x2) - (9x - 45)
= x2(x - 5) - 9(x - 5)
= (x - 5)(x2 - 9)
= (x - 5)(x - 3)(x + 3)
TL:
\(45+x^3-5x^2-9x\)
\(=x^2\left(x-5\right)-9\left(x-5\right)\)
\(=\left(x+3\right)\left(x-3\right)\left(x-5\right)\)
\(2x^2+5x+2\)
\(=2x^2+x+4x+2\)
\(=x\left(2x+1\right)+2\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x+2\right)\)
\(2x^2+5x+2\)
\(=\left(2x^2+x\right)+\left(4x+2\right)\)
\(=x\left(2x+1\right)+2\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x+2\right)\)