Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
\(\Leftrightarrow\left(1+x^2\right)^2+4x\left(1+x^2\right)\)
\(\Leftrightarrow\left(1+x^2\right)\times\left[\left(1+x^2\right)+4\right]\)
( 1+x2 )2 -4x( 1- x2 )
=x4+2x2+1-4x+4x3
=x3+2x2-x+2x3+4x2-2x-x2-2x+1
=x(x2+2x-1)+2x(x2+2x-1)-(x2+2x-1)
=(x2+2x-1)(x2+2x-1)
=(x2+2x-1)2
\(\left(1+x\right)^2-4x\left(1-x^2\right)\)
\(=\left(1+x\right)^2-4x\left(1-x\right)\left(1+x\right)\)
\(=\left(1+x\right)\left(1+x-4\left(1-x\right)\right)\)
\(=\left(1+x\right)\left(1+x-4+4x\right)\)
\(=\left(1+x\right)\left(5x-3\right)\)
dat \(x^2-2x+2=y\)
ta co pt
\(y^4+20x^2y^2+64x^4\)
\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)
\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)
\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)
bạn thay y nữa là xong
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)
\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)
\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)
\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)
=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2
=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)
=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)
\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(\left(xy+1-x-y\right)\left(xy+1+x+y\right)\)
(x^2-x+2)^2+(x-2)^2
= [(x^2-x+2)+(x-2)]^2-2[(x^2-x+2)*(x-2)] (áp dụng (a^2+b^2)=(a+b)^2-2ab
=(x^2)^2- 2((x^3-3x^2+4x-4)
=x^4-2x^3+6x^2-8x+8
giờ phân tích đa thức
x^4-2x^3+6x^2+8x-8
=(x^4-2x^3+2x^2)+(4x^2-8x+8) (cái này làm bài tập nhiêu nhìn ra nhanh)
=[x^2(x^2-2x+2)]+4(x^2-2x+2) dẹp luôn
=(x^2-2x+2)(x^2+4)
\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left[\left(x-2\right)\left(x+1\right)\right]^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x+1\right)^2+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+1\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)