
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Từ điểm B, C vẽ các đường thẳng lần lượt đi qua AC và AB và cắt AC tại D, AB tại E. Sao cho BE = DC.
Xét tam giác BEC và tam giác DCB có:
BE = DC ( chứng minh trên )
ˆB=ˆC( giả thiết )
Cạnh BC chung
=> Tam giác BEC = tam giác DCB ( c.g.c )
Vậy nếu ˆB=ˆCthì AB = AC ( đpcm )
x³ -7x +6
= x³ -x²+x²-x-6x+6
= x²(x-1)+x(x-1)-6(x-1)
= (x-1)(x² +x-6)
= (x-1)(x²-2x+3x-6)
=(x-1)(x-2)(x+3)


a. 3x2– 7x + 2 = 3x2 – 6x – x + 2
= 3x(x -2) – (x - 2)
= (x - 2)(3x - 1)
b. a(x2 + 1) – x(a2 + 1) = ax2 + a – a2x – x
= ax(x - a) – (x - a)
= (x - a)(ax - 1)
a) \(3x^2-7x+2=3x^2-x-6x+2=x\left(3x-1\right)-2\left(3x-1\right)=\left(3x-1\right)\left(x-2\right)\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)=\left(a^2+1\right)\left(a-x\right)\)

Giải:
Đặt y = x^2 + x
Khi đó, đa thức trở thành:
xy^2 - 2y - 15
=xy^2 - 5y + 3y -15
= y(xy - 5) + 3(xy -5)
= (y+ 3)(xy -5)
Thay y vào, ta được:
(x^2 - x + 3)[x(x^2 - x) - 5]
=(x^2 - x + 3)(x^3 - x^2 - 5)
Sửa đề: \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Bài giải:
a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)

Ta có : x2 + x - 6
= x2 + 3x - 2x - 6
= (x2 + 3x) - (2x + 6)
= x(x + 3) - 2(x + 3)
= (x - 2)(x + 3)

27x6 + 125y6 = ( 3x2 )3 + ( 5y2 )3 = ( 3x2 + 5y2 )( 9x4 - 15x2y2 + 25y4 )
8a6 - 8b6 = ( 2a2 )3 - ( 2b2 )3 = ( 2a - 2b )( 4a2 + 4ab + 4b2 ) = 2( a - b )4( a2 + ab + b2 ) = 8( a - b )( a2 + ab + b2 )
x4 + 64y4 = x4 + 16x2y2 + 64y4 - 16x2y2
= ( x4 + 16x2y2 + 64y4 ) - 16x2y2
= ( x2 + 8y2 )2 - ( 4xy )2
= ( x2 + 8y2 - 4xy )( x2 + 8y2 + 4xy )
x4 + x3 + 2x2 + x + 1 = x4 + x3 + x2 + x2 + x + 1
= ( x4 + x3 + x2 ) + ( x2 + x + 1 )
= x2( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x2 + 1 )
\(27x^6+125y^6=\left(3x^2\right)^3+\left(5y^2\right)^3=\left(3x^2+5y^2\right)\left(9x^4-15x^2.y^2+25y^4\right)\)
\(8a^6-8b^6=8\left(a^6-b^6\right)=8\left(\left(a^3\right)^2-\left(b^3\right)^2\right)=8\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=8\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(x^{\text{4}}+64y^4=x^4+64y^4+16x^2y^2-16x^2y^2\)
\(=\left(8y^2+x^2\right)^2-\left(4xy\right)^2=\left(8y^2+x^2+4xy\right)\left(8y^2+x^2-4xy\right)\)
\(x^4+x^3+2x^2+x+1=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)

\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
x2 – x – 6
= x2 + 2x – 3x – 6
(Tách –x = 2x – 3x)
= x(x + 2) – 3(x + 2)
(có x + 2 là nhân tử chung)
= (x – 3)(x + 2)