\(\left(x+y\right)^3-\left(x-y\right)^3\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

b) a3 + b3 + c3 - 3abc

= ( a + b)3 - 3ab - 3ba + c - 3abc

= (a3 + 3a2b + 3ab2 + b3) + c3 - (3a2b + 3ab2 + 3ab) 

= (a + b)3 + c2 - 3ab(a + b + c)

= (a + b + c) [ (a  + b)2 - ( a + b )c + c^2 ]  - 3ab(a + b + c)

=  ( a + b + c ) ( a2 + b2 + 2ab - ac - bc + c2 -3ab )

=  ( a + b + c ) ( a2 + b2 + c2 - ab - ac - bc 

20 tháng 8 2015

bạn nên viết ra 2 câu 1 bài

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

17 tháng 8 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

 Châu ơi!đăng làm j z

26 tháng 5 2017

1. (a2+b2+ab)2-a2b2-b2c2-c2a2

=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2

=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2

=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)

=(a2+b2)[(a+b)2-c2]

=(a2+b2)(a+b+c)(a+b-c)

2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2

3. a(b3-c3)+b(c3-a3)+c(a3-b3)

=ab3-ac3+bc3-ba3+ca3-cb3

=a3(c-b)+b3(a-c)+c3(b-a)

=a3(c-b)-b3(c-a)+c3(b-a)

=a3(c-b)-b3(c-b+b-a)+c3(b-a)

=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)

=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)

=(a-b)(c-b)(a2+ab+2b2+bc+c2)

4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)

5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]

=2b(3a2+b2)

6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2+y2+xy-2x-y+1)

7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)

(Đúng nhớ like nhá !)

26 tháng 5 2017

Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi

3 tháng 7 2017

Ta có ; x2 - 11x + 24

= x2 - 3x - 8x + 24

= x(x - 3) - (8x - 24)

= x(x - 3) - 8(x - 3)

= (x - 3)(x - 8)

7 tháng 7 2019

2) Để sau đi (em chưa nghĩ ra)

3) \(A=\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)^2\left(x-y\right)+\left(y+z\right)^2\left(y-z\right)+\left(z+x\right)^2\left(z-x\right)\)

Đặt x - y = a; y - z = b => z - x = -(a+b)

\(A=\left(x+y\right)^2a+\left(y+z\right)^2b-\left(z+x\right)^2a-\left(z+x\right)^2b\)

\(=a\left[\left(x+y\right)^2-\left(z+x\right)^2\right]+b\left[\left(y+z\right)^2-\left(z+x\right)^2\right]\)

\(=\left(x-y\right)\left(x+y-z-x\right)\left(x+y+z+x\right)+\left(y-z\right)\left(y+z-z-x\right)\left(y+z+z+x\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(2x+y+z\right)-\left(y-z\right)\left(x-y\right)\left(2z+x+y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

Em tính sai sót chỗ nào thì thông cảm cho em ạ :>

3 tháng 11 2017

1) a4+b4+c42a2b22a2c22b2c2

=2(a4+b4+c4-4a2b2-4a2c2-4b2c2)

=2a4+2b4+2c4-4a2b2-4a2c2-4b2c2

=(a4-2a2b2+b4)+(a4-2a2c2+c4)+(b4-2b2c2+c4