Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(x+3\right)^2+x\left(x-2\right)=2x^2\)
\(x^2+6x+9+x^2-2x-2x^2=0\)
\(4x+9=0\)
\(x=\frac{-9}{4}\)
b) \(5x\left(x-4\right)-x+4=0\)
\(5x\left(x-4\right)-\left(x-4\right)=0\)
\(\left(x-4\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{5}\end{cases}}}\)
Bài 2:
a) \(x^2-4x=x\left(x-4\right)\)
b) \(x^2+10x+25=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)
c) \(x^2-y^2+2y-1\)
\(=x^2-\left(y^2-2y+1\right)\)
\(=x^2-\left(y-1\right)^2\)
\(=\left(x-y+1\right)\left(x+y-1\right)\)
d) \(x^2-11x+18\)
\(=x^2-2x-9x+18\)
\(=x\left(x-2\right)-9\left(x-2\right)\)
\(=\left(x-2\right)\left(x-9\right)\)
(x + 3)2 + x(x - 2) = 2x2
x2 + 6x + 9 + x2 - 2x = 2x2
<=> 2x2 + 4x + 9 = 2x2
<=> 4x = -9
<=> x = -9/4
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
a) 5x2 - 10x = 5x( x - 2 )
b) x2 - y2 - 2x + 2y = (x2 - y2) - (2x - 2y)
= (x - y ) ( x + y)-2 (x-y)
= ( x - y) ( x + y - 2)
c) 4x2 - 4xy - 8y2 = (4x2 - 4xy + 8y2) - 9y2
= (2x - 9y2) - 3y2
= (2x - y - 3y) (2x - y + 3y)
= (2x - 4y) (2x + 2y)
= 4(x - 2y) (x + y)
a)
\(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
b)
\(=a\left(a-b\right)+a-b\)
\(=\left(a+1\right)\left(a-b\right)\)
c)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left(x+1-y\right)\left(x+1+y\right)\)
d)
\(=x^3\left(x-2\right)+10x\left(x-2\right)\)
\(=x\left(x^2+10\right)\left(x-2\right)\)
e)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
f)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a,2x3+3x2+2x+3
=(2x3+2x)+(3x2+3)
=2x(x2+1)+3(x2+1)
=(x2+1)(2x+3)
b,a2-ab+a-b
=(a2-ab)+(a-b)
=a(a-b)+(a-b)
=(a-b)(a+1)
c,2x2+4x+2-2y2
=2(x2+2x+1-y2)
=2[(x2+2x+1)-y2 ]
=2[(x+1)2-y2 ]
=2(x+1-y)(x+1+y)
d,x4-2x3+10x2-20x
=(x4-2x3)+(10x2-20x)
=x3(x-2)+10x(x-2)
=(x-2)(x3+10x)
=(x-2)[x(x2+10)]
e,x3+2x2+x
=x(x2+2x+1)
=x(x+1)2
f,xy+y2-x-y
=(xy+y2)-(x-y)
=y(x+y)-(x+y)
=(x+y)(y-1)
a)x4-4(x2+5)-25=x4-4x2-45=(x4-9x2)+(5x2-45)=x2(x2-9)+5(x2-9)=(x2-9)(x2+5)=(x-3)(x+3)(x2+5)
b)a2-b2-2a+1=(a2-2a+1)-b2=(a-1)2-b2=(a-b-1)(a+b-1)
c)x2-2x-4y2-4y=(x2-2x+1)-(4y2+4y+1)=(x-1)2-(2y+1)2=(x-1-2y-1)(x-1+2y+1)=(x-2y-2)(x+2y)
d)x2+4x-y2+4=(x2+4x+4)-y2=(x+2)2-y2=(x-y+2)(x+y+2)
phân tích đa thức ->nhân tử:
a)2x2+4x-70
b)x3-5x2+8x-4
c)x2-10+16
rút gọn:
(8x-8x3-10x2+3x4-5):(3x2-2x+1)
Bài 1:
a)2x2+4x-70
=2(x2+2x-35)
=2(x2+7x-5x-35)
=2[x(x+7)-5(x+7)]
=2(x-5)(x+7)
b)x3-5x2+8x-4
=x3-4x2+4x-x2+4x-4
=x(x2-4x+4)-(x2-4x+4)
=(x2-4x+4)(x-1)
=(x-2)2(x-1)
c)x2-10x+16
=x2-2x-8x+16
=x(x-2)-8(x-2)
=(x-8)(x-2)
Bài 2:
\(\frac{8x-8x^3-10x^2+3x^4-5}{3x^2-2x+1}=\frac{\left(x^2-2x-5\right)\left(3x^2-2x+1\right)}{3x^2-2x+1}=x^2-2x-5\)
a) \(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^{\text{4}}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^{\text{4}}+a^2b^2+b^{\text{4}}\right)\)
c) \(\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)
e) \(\left(x^2-10x+25\right)-4y^2=\left(x-5\right)^2-\left(2y\right)^2\)
\(=\left(x-5-2y\right)\left(x-5+2y\right)\)
g) \(x^6+27=\left(x^2\right)^3+3^3=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)
Còn lại tớ làm sau nhé, bây h muộn rùi