K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

        \(x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^3+x^2\right)+2x^2+2x+1\)

\(=\left(x^2+x\right)^2+2.\left(x^2+x\right).1+1^2\)

\(=\left(x^2+x+1\right)^2\)

Chúc bạn học tốt.

3 tháng 9 2016

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

12 tháng 9 2018

Đặt \(x^4-2x^3-x^2-2x+1=\left(x^2+ax+1\right)\left(x^2+bx+1\right)=x^4+bx^3+x^2+ãx^3+abx^2+ax+x^2+bx+1\)

=> \(x^4-2x^3-x^2-2x+1=x^4+\left(a+b\right)x^3+\left(ab+2\right)x^2+\left(a+b\right)x+1\)

=> \(\hept{\begin{cases}a+b=-2\\ab+2=-1\\a+b=-2\end{cases}}\Rightarrow a=-3;b=1\)

11 tháng 9 2018

       \(x^4-2x^3-x^2-2x+1\)

\(=\left(x^4+x^3+x^2\right)-3x^3-3x^2-3x+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)-3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-3x+1\right)\)

Chúc bạn học tốt.

15 tháng 8 2018

\(x^4+2x^3+3x^2+2x+1\)

\(=x^4+x^3+x^3+x^2+x^2+x^2+x+x+1\)

\(=\left(x^4+x^3+x^2\right)+\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)^2\)

3 tháng 9 2016

Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)

Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)

Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)

Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)

 

3 tháng 9 2016

Giả sử:

\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Ta có:

\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)

\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)

15 tháng 8 2018

\(x^4+3x^2-2x+3 \) \(=x^4+x^3-x^3+3x^2-x^2+x^2-3x+x+3\)

\(= (x^2-x+1) (x^2+x+3)\)

#Không biết đúng không nữa :v

HỌC TỐT !!

22 tháng 9 2019

2x4 - 3x3 - 7x2 +6x+8

= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8

= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)

= (x-2).(2x3 +x2 - 5x -4)

= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)

= (x-2).(x+2).(2x2 -x -4)

....