\(A=a+b+c-2\left(ab+bc+ca\right)+4abc-\dfrac{1}{2}\)thành nhân tử.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(A=a+b+c-2\left(ab+bc+ca\right)+4abc-\frac{1}{2}\)

\(=\frac{1}{2}\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)\)

từ đây khai triển ra

4 tháng 12 2016

ok, thank you nha

1 tháng 7 2017

\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)=\left(c-a\right)\left(c-b\right)\left(b-a\right)\)

31 tháng 7 2019

#)Giải :

a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)

\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

18 tháng 8 2016

→(a+b)(a2-b2) +(b+c)(b2-a2) -(c2-a2)(b+c) +(c+a)(c2-a2)

(a2-b2)(a+b-b-c)-(c2-a2)(b+c-c-a)

↔(a-c)(a2-b2)-(c2-a2)(b-a)

↔(a-c)((a2-b2-(a+c)(b-a))

↔(a-c)(a-b)(a+b+b-a)

↔2b(a-c)(a-b)

7 tháng 8 2016

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)

\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)

\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)

\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

7 tháng 8 2016

chỗ cuối phải là c^2-a^2 nha mọi người

 

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
18 tháng 8 2019

\(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left[\left(a-b\right)+\left(c-a\right)\right]+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(a-b\right)+c^2a^2\left(c-a\right)-b^2c^2\left(c-a\right)\)

\(=\left(a-b\right)b^2\left(a-c\right)\left(a+c\right)+\left(c-a\right)c^2\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(ab^2+cb^2-c^2a-c^2b\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(ab+ac+bc\right)\)

20 tháng 8 2019

t làm bên h rồi mà? Làm quá lâu rồi luôn ấy! Đáp án y chang bạn Kid:v

Câu hỏi của Trần Minh Hiển - Toán lớp 9 (không biết AD đã fix lỗi ko dán link h vào olm chưa, nếu chưa ib t gửi full link, nhớ kèm theo link câu hỏi này là ok.)