Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a) \(x^2-y^2-x-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-y^2+2yz-z^2\)
\(=x^2-\left(y^2-2yz+z^2\right)\)
\(=x^2-\left(y-z\right)^2\)
\(=\left(x-y+z\right)\left(x+y-z\right)\)
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)
c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)
\(=5\left(1-3x\right)\left(x+3y\right)\)
f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)
\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)
Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)
Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)
Ta có:
\(u^2+6v=7uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)
Xét nốt nha!
Câu b là phân tích các kiểu ra dạng như thế này nhé !
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(\text{a)}x^3-6x^2+12x-8\)
\(=x^3-2x^2-4x^2+8x+4x-8\)
\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)^2\)
\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Bài 2:
\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)
\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)
Bài 3:
\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)
\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)
a) \(a^3+b^3+c^3-3abc\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-ab+b^2-ac-bc+c^2\right)\)
b) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=\left(x-y+y-z\right)\left(x^2-2xy+y^2-xy+xz+y^2-yz+y^2-2yz+z^2\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)\left(x^2-3xy+2y^2+xz-3yz+z^2\right)-\left(x-z\right)^3\)
\(=\left(x-z\right)\left(x^2-3xy+2y^2+xz-3yz+z^2-x^2+2xz-z^2\right)\)
\(=\left(x-z\right)\left(-3xy+2y^2+3xz-3yz\right)\)
Câu 1:
Ta có \(x^3+3x-5=x^3+2x+x-5=\left(x^2+2\right)x+x-5\)
để giá trị của đa thức \(x^3+3x-5\)chia hết cho giá trị của đa thức \(x^2+2\)
thì \(x-5⋮x^2+2\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\Rightarrow x^2-25⋮x^2+2\)
\(\Leftrightarrow x^2+2-27⋮x^2+2\Rightarrow27⋮x^2+2\)
\(\Leftrightarrow x^2+2\inƯ\left(27\right)\)do \(x^2+2\inℤ,\forall x\inℤ\)
mà \(x^2+2\ge2,\forall x\inℤ\)
\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)
mà \(x^2\)là số chính phương \(\forall x\inℤ\)
\(\Rightarrow x^2\in\left\{1;25\right\}\Leftrightarrow x\in\left\{\pm1;\pm5\right\}\)
**bạn nhớ thử lại nhé
\(KL...\)
Ta có
8 x 3 + 12 x 2 y + 6 x y 2 + y 3 = ( 2 x ) 3 + 3 . ( 2 x ) 2 y + 3 . 2 x . y 2 + y 3 = ( 2 x + y ) 3
Đáp án cần chọn là: B