K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2014

a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có 

a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]

19 tháng 10 2014

mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab

1 tháng 9 2016

(a+b+c)^3 - a^3 - b^3 - c^3

=(a+b+c-a)[(a+b+c)2+a(a+b+c)+a2)-(b+c)(b2-bc+c2)

=(b+c)(3a2+b2+c2+3ab+3ac+2bc)-(b+c)(b2-bc+c2)

=(b+c)(3a2+3ab+3ac+3bc)

=3.(b+c)[a.(a+b)+c.(a+b)]

=3(b+c)(a+b)(a+c)

1 tháng 9 2016

(a + b + c)3 - a3 - b3 -c

= a+ b3 + c3  - a3 - b3 - c3 = 0

1 tháng 9 2016

Bạn Huyền sai rồi. Sao ( a + b + c )3 lại bằng a3 + b3 + c3 vậy! Theo mình thì phải thế này:

* Dùng hàng đẳng thức ta có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó biểu thức trên trở thành:
\(\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

23 tháng 6 2019

\(\left(a+b\right).\left(b+c\right).\left(c-a\right)+\left(b+c\right).\left(c+a\right).\left(a-b\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left[\left(b+c\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left(ac-a^2+bc-ab+a^2-ab+ac-bc\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=-\left(a+b\right).2a.\left(b-c\right)+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=\left(a+b\right).\left(b-c\right).\left(-2a+c+a\right)=\left(a+b\right).\left(b-c\right).\left(c-a\right)\)

23 tháng 6 2019

giai lai:

\(\left(b+c\right).\left[\left(a+b\right).\left(c-a\right)+\left(c+a\right).\left(a-b\right)\right]+\left(c+a\right).\left(a+b\right).\left(b-c\right)\)

\(=-\left(b+c\right).2a.\left(b-c\right)+\left(b-c\right).\left(ac+bc+a^2+ab\right)\)

\(=\left(b-c\right).\left(-2ab-2ac+ac+bc+a^2+ab\right)\)

\(=\left(b-c\right).\left(-ab-ac+bc+a^2\right)\)

\(=\left(b-c\right).\left(a+b\right).\left(a-c\right)\)

18 tháng 7 2016

a) Đặt a + b = x ; a - b = y. Khi đó:
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(\Leftrightarrow x^3-y^3\)
\(\Leftrightarrow\left[x-y\right]\left[x^2+xy+y^2\right]\)
Thế lại vào ta có:
\(\Leftrightarrow\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(\Leftrightarrow\left[\left(a-a\right)+\left(b+b\right)\right]\left[\left(a^2+b^2+2ab\right)+\left(a^2-b^2\right)+\left(a^2+b^2-2ab\right)\right]\)
\(\Leftrightarrow2b\left[\left(a^2+a^2+a^2\right)+\left(b^2-b^2+b^2\right)+\left(2ab-2ab\right)\right]\)
\(\Leftrightarrow2b\left[3a^2+b^2\right]\)

Mik làm tuỳ theo mình piết thôi nhé

a)   ( a + b )3- ( a - b )3= a+ b3 - a- b= a- a3 + b- b3 = 0

b) tương tự như ở trên!!! Hơi khác một tí!!!

c)   ( 6x - 1 )2 - ( 3x + 2 ) = ..........

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left(\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)

\(=2b\left(\left(a+b\right)^2+\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)

\(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=\left(a+b+a-b\right)\left(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)

\(=2a\left(\left(a+b\right)^2-\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)

19 tháng 7 2016

a) (a+b)3 -(a-b)= a3 + 3a2b + 3ab2 +b3 - a3 + 3a2b - 3ab2 +b3

                       = 2a3 + 6a2b  + 2b3

26 tháng 9 2016

(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến

11 tháng 10 2017

 k bt nhoak

bạn gửi lời kết bạn nhé mình hết ượt rui ok 

14 tháng 8 2021

Ta có: VT=(a+b+c)3a3b3c3VT=(a+b+c)3−a3−b3−c3

=[(a+b+c)3a3](b3+c3)=[(a+b+c)3−a3]−(b3+c3)

=(b+c)[(a+b+c)2+(a+b+c)a+a2](b+c)(b2bc+c2)=(b+c)[(a+b+c)2+(a+b+c)a+a2]−(b+c)(b2−bc+c2)

=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)

=3(b+c)[a(a+b)+c(a+b)]=3(b+c)[a(a+b)+c(a+b)]

=3(a+b)(b+c)(c+a)=VP=3(a+b)(b+c)(c+a)=VP (Đpcm)

Thật ra mình làm theo đề thấy nó đáng ra phải là chứng minh chứ ko phải phân tích . chúc học tốt!