K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko

hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

11 tháng 3 2021

Ta có: 

\(A=8abc+4\left(ab+bc+ca\right)+2\left(a+b+c\right)+1\)

\(A=\left(8abc+4ab\right)+\left(4bc+2b\right)+\left(4ca+2a\right)+\left(2c+1\right)\)

\(A=4ab\left(2c+1\right)+2b\left(2c+1\right)+2a\left(2c+1\right)+\left(2c+1\right)\)

\(A=\left(2c+1\right)\left(4ab+2a+2b+1\right)\)

\(A=\left(2c+1\right)\left[2a\left(2b+1\right)+\left(2b+1\right)\right]\)

\(A=\left(2a+1\right)\left(2b+1\right)\left(2c+1\right)\)

11 tháng 3 2021

Ta có:\(A=8abc+4\left(ab+bc+ca\right)+2\left(a+b+c\right)+1\)

\(=8abc+4ab+4bc+4ca+2a+2b+2c+1\)

\(=\left(8abc+4ab\right)+\left(4bc+2b\right)+\left(4ca+2a\right)+\left(2c+1\right)\)

\(=4ab\left(2c+1\right)+2b\left(2c+1\right)+2a\left(2c+1\right)+\left(2c+1\right)\)

\(=\left(2c+1\right)\left(4ab+2b+2a+1\right)\)

\(=\left(2c+1\right)\left[2b\left(2a+1\right)+\left(2a+1\right)\right]\)

\(=\left(2c+1\right)\left(2b+1\right)\left(2a+1\right)\)

13 tháng 10 2016

d) (b+c)(b+a)(c-a)

c) (b-1)(ac+1-a-c)

thông cảm 2 câu đầu chưa nghĩ ra 

19 tháng 10 2016

cho mình k mình giúp

19 tháng 10 2016

- Giúp với ạ

16 tháng 10 2016

gợi ý thôi chứ giải ra dài lắm nhân phá ra

31 tháng 10 2015

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)

\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)

\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)

\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

mình làm vội, có chỗ nào sai bạn thông cảm nha