K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

a) \(3xyz^2-5xzt=xz\left(3yz-5t\right)\)

b) \(49x^2-25=\left(7x-5\right)\left(7x+5\right)\)

c) \(x^3+8z^3=\left(x+2z\right)\left(x^2+4zx+4x^2\right)\)

22 tháng 7 2016

hằng đẳng thức a2-b2=(a-b)(a+b) í bạn

1 tháng 11 2017

a,81-(x^2-4xy+4y^2)=81-(x-2y)^2=(9-(x-2y))(9+(x-2y))=(9-x+2y)(9+x-2y)

b,x^3+y^3+z^3-3xyz=(x^3+3(x^2)y+3x(y^2)+y^3)+z^3-3xyz-3xy(x+y)

=((x+y)^3+3((x+y)^2)z+3(x+y)z^2+z^3)-(3xyz-3xy(x+y))-3(x+y)z(x+y+z)

=(x+y+z)^3-3(x+y)z(x+y+z)-3xy(x+y+z)=(x+y+z)((x+y+z)^2-3(x+y)z-3xy)

=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3yz-3xz)=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

20 tháng 10 2015

1/ phân tích thành nhân tử ;

= C2-( a +b )2=( c-a -b ) . ( c+a +b )

 

30 tháng 9 2015

 

a) x3+y3+z3-3xyz

=(x+y)3+z3-3x2y-3xy2-3xyz

=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)

=(x+y+z)(x2+y2+zx+zy+z2-zy)

 

b)a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2a-c2b

=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)

=b.(a2-c2)-ac.(a-c)-b2.(a-c)

=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)

=(a-c)[b.(a+c)-ac-b2]

=(a-c)(ab+bc-ac-b2)

=(a-c)[(ab-ac)+(bc-b2)]

=(a-c)[a.(b-c)-b.(b-c)]

=(a-c)(b-c)(a-b)

14 tháng 10 2014

b = x.(x2 + 6x + 9 - 4y2 ) =x.((x+3)2 -4y2 )= x.(x+3-2y).(x+3+2y)

c = (x2 - 2x)+(2y-xy) = x.(x-2) +y.(2-x)= x.(x-2) + y.(-x+2)= x.(x-2) - y.(x-2) = (x-y).(x-2)

d = (x2 +1)2 - 4x2 = (x2 + 1 - 2x).(x2 +1 +2x) = (x-1)2 . (x+1)2

a = (7x)2 - (0.5y)  = (7x - 0,5y).(7x+0,5y)

26 tháng 10 2016

Áp dụng tính chất \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) ta đc

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

                                       \(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

                                        \(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)

                                       \(=\left(x+y+z\right)^3-\left(x+y+z\right)\left(3xz-3yz-3xy\right)\)

                                      \(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xz-3yz-3xy\right]\)

                                       \(=\left(x+y+z\right)\left(x^2+y^2+x^2+2xy+2yz+2xz-3xz-3yz-3xy\right)\)

                                        \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

19 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\)

\(x^3+x^2+9x-10x^2-10x+25x+25\)

\(=x^2\left(x+1\right)-10x\left(x+1\right)+25\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-10x+25\right)=\left(x+1\right)\left(x-5\right)^2\)

26 tháng 7 2019

tao dep trai lam